期刊文献+

Unraveling one billion years of geological evolution of the southeastern Amazonia Craton from detrital zircon analyses

下载PDF
导出
摘要 Despite representing one of the largest cratons on Earth,the early geological evolution of the Amazonia Craton remains poorly known due to relatively poor exposure and because younger metamorphic and tectonic events have obscured initial information.In this study,we investigated the sedimentary archives of the Carajás Basin to unravel the early geological evolution of the southeastern Amazonia Craton.The Carajás Basin contains sedimentary rocks that were deposited throughout a long period spanning more than one billion years from the Mesoarchean to the Paleoproterozoic.The oldest archives preserved in this basin consist of a few ca.3.6 Ga detrital zircon grains showing that the geological roots of the Amazonia Craton were already formed by the Eoarchean.During the Paleoarchean or the early Mesoarchean(<3.1 Ga),the Carajás Basin was large and rigid enough to sustain the formation and preservation of the Rio Novo Group greenstone belt.Later,during the Neoarchean,at ca.2.7 Ga,the southeastern Amazonia Craton witnessed the emplacement of the Parauapebas Large Igneous Province(LIP)that probably covered a large part of the craton and was associated with the deposition of some of the world largest iron formations.The emplacement of this LIP immediately preceded a period of continental extension that formed a rift infilled first by iron formations followed by terrigenous sediments.This major change of sedimentary regime might have been controlled by the regional tectonic evolution of the Amazonia Craton and its emergence above sea-level.During the Paleoproterozoic,at ca.2.1 Ga,the Rio Fresco Group,consisting of terrigenous sediments from the interior of the Amazonia Craton,was deposited in the Carajás Basin.At that time,the Amazonian lithosphere could have either underwent thermal subsidence forming a large intracratonic basin or could have been deformed by long wavelength flexures that induced the formation of basins and swells throughout the craton under the influence of the growing Transamazonian mountain belt.
出处 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第5期129-152,共24页 地学前缘(英文版)
基金 funded by grants of the Fundação AmparoàPesquisa do Estado de São Paulo(FAPESP 2015/16235-2,2017/18840-6,2018/02645-2,2018/14617-3,2018/05892-0,2019/17732-0,2019/16066-7 and 2019/12132-5) the Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq 308045/2013-0 and 307353/2019-2) the Fundação AmparoàPesquisa do Minas Gerais(FAPEMIG project APQ-03793-16)。
  • 相关文献

参考文献9

二级参考文献65

共引文献123

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部