摘要
随着能源革命的不断推进,电网精准投资成为满足电力需求增长、激发电网企业内部潜力的有效手段。精准投资体现在“稳”和“精”两个方面,科学化的投资体系要求电网企业使用更加有效的投资需求预测方法。当前电网企业投资的影响因素分析方法较为单一,投资需求的预测精度不高。本文基于德尔菲法分析影响电网投资需求的内外部因素,利用灰色关联度分析法筛选出对需求预测影响程度较大的因素,构建了PSO-GM(1,N)电网投资预测模型,并对山东区近年来电网投资需求预测进行仿真训练,验证了该模型的可行性,有效地提升了电网投资需求预测的有效性和精准性,有助于管理决策者对未来投资趋势的把握,为电网投资的优化奠定基础。
With the continuous advancement of the energy revolution,accurate investment in power grid has become an effective means to meet the growth of power demand and stimulate the internal potential of power grid enterprises.Accurate investment is reflected in the two aspects of"stability"and"precision".Scientific investment system requires power grid enterprises to use more effective investment demand forecasting methods.At present,the analysis method of influencing factors of power grid enterprise investment is relatively simple,and the prediction accuracy of investment demand is not high.Based on the Delphi method,this paper analyzes the internal and external factors that affect the investment demand of power grid,uses the gray correlation analysis method to screen out the factors that have a greater impact on the demand forecast,and constructs the PSO-GM(1,N)investment forecast model of power grid.The simulation training of the investment demand forecast of Shandong Power Grid in recent years verifies the feasibility of the model,which effectively improves the investment demand of power grid.The effectiveness and accuracy of the prediction are helpful for management decision-makers to grasp the future investment trend and lay the foundation for the optimization of power grid investment.
作者
刘宇静
牛东晓
LIU Yu-jing;NIU Dong-xiao(School of Economics and Management,,North China Electric Power University,Beijing 102206,China)
出处
《华北电力大学学报(社会科学版)》
2022年第4期40-49,共10页
Journal of North China Electric Power University(Social Sciences)
基金
教育部哲学社会科学重大课题攻关项目“构建清洁低碳、安全高效的能源体系政策与机制研究”(18JZD032)
国网山东省电力公司项目支持“新形势下山东电网投资策略优化研究及辅助决策模型构建研究”(SGSDJY00GPJS2000083)。
关键词
精准投资
灰色关联
粒子群优化
投资需求预测
precise investment
grey correlation
particle swarm optimization
investment demand forecasting