摘要
非线性Schr9dinger方程是一类应用广泛的非线性偏微分方程.广义(3+1)维非线性Sasa-Satsuma方程是非线性Schr9dinger方程在三维空间的推广形式,可以描述孤立波在光纤中传播的物理过程.本文利用复行波变换和多项式完全判别系统,得到了非线性Sasa-Satsuma方程的一类新的精确行波解.
Nonlinear Schrodinger equations is a kind of nonlinear partial differential equation are useful in variety applications. A generalized(3+1)dimensional nonlinear Sasa-Satsuma equation is a generalization of nonlinear Schrodinger equation in three-dimensional space, which can describe the physical process of solitary wave propagation in optical fiber. A new class of exact traveling wave solutions of nonlinear Sasa-Satsuma equation are obtained by employing complex traveling wave transformation and complete polynomial discrimination system.
作者
韩天勇
李钊
HAN Tianyong;LI Zhao(College of Computer Science,Chengdu University,Chengdu 610106,China;Geomathematics Key Laboratory of Sichuan Province,Chengdu University of Technology,Chengdu 610059,China)
出处
《四川职业技术学院学报》
2022年第4期163-168,共6页
Journal of Sichuan Vocational and Technical College
基金
数学地质四川省重点实验室开放基金资助课题“几类分数阶随机偏微分方程的精确行波解、分支、稳定性及其在地质方面的应用”(scsxdz2021yb05)。