摘要
针对强噪声背景下风力机齿轮箱振动信号易被掩盖、难以提取的难题,基于频域谱负熵(Frequency-domain Spectral Negentropy,FSN)改进经验小波变换(Empirical Wavelet Transform,EWT)提出优化经验小波变换方法(Improved Empirical Wavelet Transform,IEWT),并采用改进灰狼算法(Improved Grey Wolf Optimization,IGWO)优化支持向量机(Support Vector Machine,SVM)惩罚系数α及核参数σ。基于NREL GRC风力机齿轮箱数据验证所提方法的有效性。结果表明:IEWT-IGWO-SVM可有效提取故障信息并进行故障识别,分类准确率高达99.66%。
In order to solve the problem that the wind turbine gearbox vibration signal is easily masked and difficult to extract in a strong noise background,an improved empirical wavelet transform(IEWT)method is proposed based on the empirical wavelet transform(EWT)improved by the frequency-domain spectral negentropy(FSN).The improved grey wolf optimization(IGWO)is used to optimize the penalty coefficients and kernel parameters of the support vector machine(SVM).The effectiveness of the proposed method is verified based on NREL GRC wind turbine gearbox data.The results show that IEWT-IGWO-SVM can effectively extract fault information and perform fault identification with the classification accuracy up to 99.66%.
作者
孙康
金江涛
李春
许子非
SUN Kang;JIN Jiang-tao;LI Chun;XU Zi-fei(School of Energy and Power Engineering,University of Shanghai for Science and Technology,Shanghai,China,200093;Shanghai Key lahoralory of Multiphase Flow and Heat Transfer in Power Engineering,Shanghai,China,200093)
出处
《热能动力工程》
CAS
CSCD
北大核心
2022年第8期186-196,共11页
Journal of Engineering for Thermal Energy and Power
基金
国家自然科学基金(52006148,51976131,52106262)
上海“科技创新行动计划”地方院校能力建设项目(19060502200)。
关键词
经验小波变换
频域谱负熵
灰狼算法
支持向量机
风力机齿轮箱
empirical wavelet transform
frequency-domain spectral negentropy(FSN)
grey wolf optimization
support vector machine
wind turbine gearbox