期刊文献+

基于LSTM神经网络与贝叶斯优化的电站风机故障预警 被引量:18

Fault Warning of Power Plant Fans based on Long Short-term Memory Neural Network and Bayesian Optimization
原文传递
导出
摘要 风机持续健康稳定运行是电站机组安全性与经济性的重要保障,故障预警技术对于提高风机运行可靠性和降低维护成本尤为重要。为此,本文提出一种基于长短期记忆(Long short-term memory,LSTM)神经网络与贝叶斯优化算法的早期故障预警方法,充分挖掘电站风机正常运行数据,采用LSTM网络挖掘多种参数的关联特性及历史数据的时序特性,建立风机运行状态预测模型。为了提高预测模型的精确度,利用贝叶斯优化算法优化并设定LSTM网络的最佳超参数组合。考虑模型预测偏离度的非平稳性和多极值特点,引入广义极值理论从正常运行工况中确定报警阈值,以实现设备的早期故障预警。最后,将所提出的算法应用于某燃煤电站引风机故障预警中。结果表明:贝叶斯优化算法优化后的LSTM神经网络不仅可以精确表征风机在正常状态下运行行为,同时能够准确地获取风机的故障信息,从而能够在故障发生前4 h发现异常,实现故障预警。 The continuous healthy and stable operation of fans is an important guarantee for the safety and economy of power station units.Fault warning technology is particularly important to enhance the operating reliability of power plant fans and reduce maintenance costs.Thus,an early fault warning method based on long short-term memory(LSTM)neural network and Bayesian optimization(BO)algorithm is proposed in this paper.By making full use of the normal operation data of fans,LSTM network is used to mine the correlation characteristics of various parameters and the time series characteristics of historical data,and the prediction model of fan operation state is established.In order to improve the accuracy of the prediction model,BO algorithm is used to optimize and set the optimal hyperparameter combination of LSTM network.Considering the non-stationarity and multiple-extremum characteristics of the model prediction deviations,generalized extreme value theory is introduced to determine the alarm threshold from normal operating conditions and to realize the early fault warning of equipment.Finally,the proposed algorithm is applied to detect the early fault alert of an induced draft fan in a coal-fired power plant.The results show that the LSTM neural network optimized by Bayesian optimization algorithm can not only describe the normal operation behavior of the fan precisely,but also obtain the fault information accurately.Thus,the anomaly can be found 4 hours before the fault occurs,so as to realize fault warning.
作者 雷萌 吕游 魏玮 任倩 LEI Meng;LYU You;WEI Wei;REN Qian(School of Contol and Computer Engineering,North China University of Electrie Power,Beijing,China,102206;Key Laboralory of Power Station Energy Transfer Conversion and System of MOE,North China Electrice Power University,Beijing,China,102206;Beijing Zhongjiaoguotong ITS Technology Co.,Ltd.,Beijig,China,100088)
出处 《热能动力工程》 CAS CSCD 北大核心 2022年第8期213-220,共8页 Journal of Engineering for Thermal Energy and Power
基金 国家重点研发计划课题(2021YFB2601405)。
关键词 LSTM神经网络 贝叶斯优化 电站风机 故障预警 预测偏离度 广义极值理论 LSTM neural network Bayesian optimization power plant fans fault warning prediction deviation generalized extreme value theory
  • 相关文献

参考文献9

二级参考文献99

  • 1赵志丹,王峥,薛义,李伟,王晓勇,郝德锋,陈志刚.330 MW循环流化床机组模拟量控制系统优化[J].热力发电,2013,42(8):107-111. 被引量:4
  • 2黄焕袍,武利强,韩京清,高峰,林永君.火电单元机组协调系统的自抗扰控制方案研究[J].中国电机工程学报,2004,24(10):168-173. 被引量:51
  • 3姚峻,陈维和.900MW超临界机组一次调频试验研究[J].华东电力,2006,34(8):84-87. 被引量:34
  • 4王治国,刘吉臻,谭文,杨光军.基于快速性与经济性多目标优化的火电厂厂级负荷分配研究[J].中国电机工程学报,2006,26(19):86-92. 被引量:67
  • 5Crabtree C J, Feng Y, Tavner P J. Detecting incipient wind turbine gearbox failure., a signal analysis method for on-line condition monitoring[C]//Proceeding of European Wind Energy Conference, Poland, 2010.
  • 6Hameed Z, Hong Y S, Cho Y M, et al. Condition monitoring and fault detection of wind turbines and related algorithms: a review[J]. Renewable and Sustainable Energy Reviews, 2009, 13(1): 1-39.
  • 7Amirat Y, Benbouzid M, A1-Ahmar E. A brief status on condition monitoring and fault diagnosis in wind energy conversion systems[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2629-2636.
  • 8Lu Bin, Li Yaoyu, Wu Xin. A review of recent advance in wind turbine condition monitoring and fault diagnosis [C]//Proceedings of Power Electronics and Machines in Wind Application, Lincoln, 2009: 1-7.
  • 9Zaher A, McArther S D J, Infield D G, et al. Online wind turbine fault detection through automated scada data analysis[J]. Wind Energy , 2009, 12(6): 574-593.
  • 10Yang Wenxian, Tavner P J, Crabtree C J, et al. Costeffective condition monitoring for wind turbines[J]. IEEE TranslndustrialElectronics, 2010, 57(1): 263-271.

共引文献589

同被引文献226

引证文献18

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部