期刊文献+

多重图的处处无零整数流

Nowhere-Zero Integer Flows in the Multigraphs
原文传递
导出
摘要 【目的】探讨多重图与它的基图的处处无零整数流的存在性之间的关系。【方法】用原图的处处无零整数流构造新图的处处无零整数流。【结果】1)若一个多重图的基图存在处处无零k-流,则它也存在处处无零k-流;2)如果两个多重图有共同的基图,并且它们的任意一条公共边都是基图中某个边的平行边,那么这两个多重图的处处无零k-流的存在性一致。【结论】得到的结果不但有助于对处处无零整数流这一概念的理解,还可应用到简单图的处处无零整数流的研究中。 [Purposes]Investigate the relationship between the existence of nowhere-zero integer flows of a multigraph and its base graph.[Methods]Use nowhere-zero integer flows of original graphs to construct nowhere-zero integer flows of new graphs.[Findings]There are two main results:1)If the base graph of a multigraph has a nowhere-zero k-flow,then it also has a nowhere-zero k-flow.2)If two multigraphs have a common base graph and each of their common edges is a parallel edge of an edge in the base graph,then the existence of nowhere-zero k-flows of the two multigraphs is identical.[Conclusions]The main results are not only helpful to understand the concept of nowhere-zero integer flow,but also can be applied to the study of nowhere-zero integer flows of simple graphs.
作者 张真 张军阳 ZHANG Zhen;ZHANG Junyang(College of Mathematical Sciences,Chongqing Normal University,Chongqing 401331,China)
出处 《重庆师范大学学报(自然科学版)》 CAS 北大核心 2022年第4期32-35,共4页 Journal of Chongqing Normal University:Natural Science
基金 国家自然科学基金面上项目(No.11671276) 重庆师范大学人才引进/博士启动项目(No.21XLB006) 重庆市基础研究与前沿探索项目(No.cstc2018jcyjAX0010)。
关键词 多重图 整数流 处处无零整数流 multigraph integer flow nowhere-zero integer flow
  • 相关文献

参考文献3

二级参考文献21

  • 1Alspach B, Liu Y, Zhang C -Q. Nowhere-zero 4-flows and Cayley graphs on solvable groups. SIAM J Discrete Math, 1996, 9:151-154.
  • 213ondy J A, Murty U S R. Graphs Theory with Applications. New York: Macmillan Press, 1976.
  • 3Fan G, Zhou C. Ore condition and nowhere-zero 3-flows. SIAM J Discrete Math, 2008, 22:288-294.
  • 4Jaeger F. Flows and generalized coloring theorems in graphs. J Combin Theory Ser B, 19797 26:205-216.
  • 5Jaeger J, Linial N, Payan C, Tarsi N. Group connectivity of graphs--a non- homogeneous analogue of nowhere zero flow properties. J Combin Theory Ser B, 1992, 56:165-182.
  • 6Lai H -J. Group connectivity of 3-edge-connected chordal graphs. Graphs Combin, 2000, 16:165-176.
  • 7Li L, Li X, Shu C. Group connectivity of bridged graphs. Graphs Combin, 2013, 29: 1059-1066.
  • 8Li X, Shao Y, Lai H -J. Degree condition and Z3-connectivity. Discrete Math, 2012, 312:1658-1669.
  • 9Lovasz L M, Thomassen C, Wu Y, Zhang C -Q. Nowhere-zero 3-flows and modulo k-orientations. J Combin Theory Ser B, 2013, 103:587-598.
  • 10Nenesiove M, Skoviera M. Nowhere-zero flows in Cayley graphs and Sylow 2-subgroups. J Algebraic Combin, 2009, 30:103-110.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部