摘要
【目的】研究R^(3)中一类带有一般项的Schrodinger-Poisson系统在指定L^(2)范数下基态解的存在性。【方法】运用集中紧性原理、Brézis-Lieb引理及一些分析方法进行了研究。【结果】首先得到了系统的能量泛函在约束下的下确界是可达的,然后找到了能量泛函的约束极小元。【结论】当非线性项满足适当假设条件时,基态解存在。
[Purposes]The existence of ground state solutions for a class of Schrodinger-Poisson system with a general term in R^(3)under a given L^(2)norm is studied.[Methods]The Lions’concentration-compactness principle,Brézis-Lieblemma and some analytical methods are used to study this system.[Findings]Firstly,the infimum of the energy functional of the system is reachable under constraints.Secondly the normalized minimizers of the energy functional is found.[Conclusions]The ground state solution exists when the nonlinear term satisfies certain assumptions.
作者
张秀娟
王淑丽
郭祖记
ZHANG Xiujuan;WANG Shuli;GUO Zuji(School of Mathematics,Taiyuan University of Technology,Taiyuan 030024,China)
出处
《重庆师范大学学报(自然科学版)》
CAS
北大核心
2022年第4期100-104,共5页
Journal of Chongqing Normal University:Natural Science
基金
国家自然科学青年基金(No.11601363)。