期刊文献+

An Improved Gas-Kinetic Scheme for Multimaterial Flows 被引量:1

原文传递
导出
摘要 The efficiency of recently developed gas-kinetic scheme for multimaterial flows is increased through the adoption of a new iteration method in the kinetic non-mixing Riemann solver and an interface sharpening reconstruction method at a cell interface.The iteration method is used to determine the velocity of fluid interface,based on the force balance between both sides due to the incidence and bounce back of particles at the interface.An improved Aitken method is proposed with a simple hybrid of the modified Aitken method(Aitken-Chen)and the Steffensen method.Numerical tests validate its efficiency with significantly less calls to the function not only for the average number but also for the maximum.The new reconstruction is based on the tangent of hyperbola for interface capturing(THINC)but applied only to the volume fraction,which is very simple to be implemented under the stratified frame-work and capable of resolving fluid interface in mixture.Furthermore,the directional splitting is adopted rather than the previous quasi-one-dimensional method.Typical numerical tests,including several watergas shock tube flows,and the shock-water cylinder interaction flow show that the improved gas-kinetic scheme can capture fluid interfaces much sharper,while preserving the advantages of the original one.
作者 Qibing Li
机构地区 AML
出处 《Communications in Computational Physics》 SCIE 2020年第1期145-166,共22页 计算物理通讯(英文)
基金 supported by Science Challenge Project(TZ2016001) National Natural Science Foundation of China(U1430235) Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund(the second phase).
  • 相关文献

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部