期刊文献+

A Novel Angle of Arrival Tracking Method in Large-Scale-Array Systems

下载PDF
导出
摘要 In this paper,we investigate the problem of angle of arrival(AOA)tracking for the largescale array in terahertz(THz)communication,which has a large size and a narrow beam,highly demanding an accurate angle estimation.On the one hand,the system usually adopts a hybrid structure with limited radio-frequency(RF)chains,which increases the difficulty of angle estimation;on the other hand,the rapid mobility of users also brings new challenges to angle estimation.To address the above challenges,a two-stage tracking framework is proposed in this paper,which employs the random phase matrix and orthogonal long pilots in the first stage to reduce the complicated multi-user estimation to multiple single-user estimations,followed by using both wide and narrow beams in the second stage to serve high-speed and low-speed users.Furthermore,a generalized-approximated-message-passing(GAMP)method is proposed for facilitating a low-accuracy estimation of the angles,followed by adopting a modified expectation-maximization(EM)algorithm based phase estimation to unbiased estimate the instantaneous angle with the help of high-gain characteristics of the beams.The proposed structure can not only simplify the estimation complexity,but also improve the estimation accuracy due to its capability of transferring the non-linear problem of angle observation into a linear gaussian model.In addition,the Kalman tracking framework is employed for performing a continuous angle tracking.Numerical results show that the angle estimation based on the random phase matrix in the initial stage can obtain a high enough estimation accuracy,while the GAMP algorithm implemented in the second stage can quickly capture the angle range under the Rayleigh limit.The performance of the proposed EM-based tracking method is shown to outperform the traditional extended Kalman filter(EKF)method.
出处 《China Communications》 SCIE CSCD 2022年第9期171-190,共20页 中国通信(英文版)
基金 supported by the National Key Research and Development Program of China(No.SQ2019YFB180005)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部