摘要
选用较传统更贴切的组合数以优化半长区间上素数连乘积的上界估计,然后通过构造半长区间的有限序列来覆盖全区间上的素数,由此得到契比雪夫界限定理(Chebyshev’s Bound)中上界限(即控制函数)的若干改进,并给出改进后估计式的关键参数的控制范围和具体算法.
This paper shows some improvements of Chebyshev’ss Bound(i.e.upper control function)and presents the control area and algorithm of key parameters.Some combinatorial number better than the traditional one is chosen and estimated upper bound of continued product of prime numbers on half-length interval is optimized.Finally,all prime numbers in the given interval are covered by an infinite half-length sequence.
作者
陈刚
吴彬
Chen Gang;Wu Bin(Public Teaching Department of Nantong Vocational University,Nantong 226007,China)
出处
《南京师大学报(自然科学版)》
CAS
CSCD
北大核心
2022年第3期15-19,共5页
Journal of Nanjing Normal University(Natural Science Edition)
基金
国家自然科学基金面上项目(11771224)。
关键词
契比雪夫界限定理
控制函数
改进
组合数
素数连乘积
向下整数序列
Chebyshev’ss bound
control function
improvement
combinatorial number
continued product of prime numbers
downward sequence of integer