期刊文献+

Three-dimensional transient simulation of CO_(2) laser tissue vaporization and experimental evaluation with a hydrogel phantom

下载PDF
导出
摘要 A quantitative analysis method of CO_(2) laser treatments promotes laser treatment performance and rapid clinical application of novel treatment devices.The in silico clinical trial approach,which is based on computational simulation of light-tissue interactions using the mathematical model,can provide quantitative data.Although several simulation methods of laser tissue vaporization with CO_(2) laser treatments have been proposed,validations of the CO_(2) laser wavelength have been insuffcient.In this study,we demonstrated a tissue vaporization simulation using a CO_(2) laser and performed the experimental validation using a hydrogel phantom with constant physical parameters to evaluate the simulation accuracy of the vaporization process.The laser tissue vaporization simulation consists of the calculation of light transport,photothermal conversion,thermal diffusion,and phase change in the tissue.The vaporization width,depth,and area with CO_(2) laser irradiation to a tissue model were simulated.The simulated results differed from the actual vaporization width and depth by approximately 20%and 30%,respectively,because of the solubilization of the hydrogel phantom.Alternatively,the simulation vaporization area for all light irradiation parameters,which is related to the vaporization amount,agreed well with the actual vaporization values.These results suggest that the computational simulation can be used to evaluate the amount of tissue vaporization in the safety and effectiveness analysis of CO_(2) laser treatments.
出处 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2022年第3期1-9,共9页 创新光学健康科学杂志(英文)
基金 supported by the Japan Society for the Promotion of Science KAKENHI(contract grant numbers:20H04549,19K12822).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部