期刊文献+

非定常扩散方程基于调和平均点插值的有限体积格式

Finite volume schemes of evolutionary diffusion equations based on harmonic averaging interpolation
原文传递
导出
摘要 本文研究非定常扩散方程适用于扭曲和非结构网格的单元中心型的有限体积格式.在网格边上离散法向流时,选取当前网格边及与其相邻网格边上的调和平均点作为辅助插值点,通过它们与单元中心点不同的组合形式给出4类法向流的离散近似,最后通过调和平均点的两点插值算法,将其替换成相邻单元的中心未知量,进而建立4种单元中心型有限体积格式.时间导数项采用向后Euler格式进行离散.该格式具有模板小、易实现的优点,满足局部守恒和二阶收敛的特性.在一定网格假设前提下,理论上证明了算法的稳定性和收敛性.数值上考虑扩散系数是连续的、间断的、各向异性的甚至依赖于未知量是非线性的等情形,分别在非结构三角形、四边形和多边形网格上进行求解.结果表明,前两种算法对不同网格不同类型扩散系数问题上的鲁棒性更好,L^(2)误差均可达到二阶收敛,H^(1)误差接近一阶甚至高于一阶收敛;后两种算法对网格的依赖性更强. This paper focuses on developing cell-centered finite volume schemes on arbitrary distorted and unstructured meshes for evolutionary diffusion equations.On each mesh cell,by using the cell center and three harmonic averaging points on cell boundaries as the interpolation points,we approximate the normal flux in four different ways.To make these finite volume schemes cell-centered,we eliminate the intermediate variables in the flux expression by the harmonic averaging interpolation procedure.We discretize the time derivative term by the backward Euler scheme.Under some proper assumptions on meshes,we prove the stability and error estimate of the scheme theoretically.Considering the continuous,discontinuous,and heterogeneous diffusion tensors,even for the nonlinear diffusion equations,we construct four numerical experiments to investigate the convergence and robustness.Several different unstructured triangular,quadrilateral,and polygonal meshes are adopted.The numerical results imply that the former two schemes are robust for any kind of mesh and any kind of diffusion tensor,and they can obtain second-order convergence in L^(2)norm and first-order convergence in H^(1) norm;but the latter two schemes are more dependent on meshes.
作者 张海成 单丽 Haicheng Zhang;Li Shan
出处 《中国科学:数学》 CSCD 北大核心 2022年第8期969-988,共20页 Scientia Sinica:Mathematica
基金 辽宁省教育厅科学研究基金(批准号:LJ2020JCL009) 汕头大学科研启动基金(批准号:NTF21006)资助项目。
关键词 有限体积法 非定常扩散方程 非结构网格 线性精确 调和平均点 finite volume method evolutionary diffusion equation unstructured mesh linearity preserving criterion harmonic averaging point
  • 相关文献

参考文献2

二级参考文献32

  • 1Aavatsmark I, et al. Discretization on unstructured grids for inhomogeneous, anisotropic media, part I: derivation of the methods[J]. SIAM Journal on Scientific Computing, 1998, 19(5): 1700-1716.
  • 2Eymard R, Gallout T, Herbin R. Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces[J]. IMA Journal of Numerical Analysis, 2010, 30(4): 1009-1043.
  • 3李德元,水鸿寿,汤敏君.关于非矩形网格上的二维抛物方程的差分格式[J].数值计算与计算机应用,1980,1(4):217-224.
  • 4Domelevo K, Omnes P. A finite volume method for the Laplace equation on almost arbitrary two- dimensional grids[J]. ESAIM: Mathematical Modelling and Numerical Analysis, 2005, 39(6): 1203-1249.
  • 5Wu J M, et al. Linearity preserving nine-point schemes for diffusion equation on distorted quadrilateral meshes[J]. Journal of Computational Physics, 2010, 229(9): 3382-3401.
  • 6Le Potier C. Finite volume monotone scheme for highly anisotropie diffusion operators on unstructured triangular meshes[J]. Comptes Rendus Mathematique, 2005, 341(12): 787-792.
  • 7Wu J M, Gao Z M, Dai Z H. A stabilized linearity-preserving scheme for the heterogeneous and anisotropic diffusion problems on polygonal meshes[J]. Journal of Computational Physics, 2012, 231(21): 7152-7169.
  • 8Agelas L, Eymard R, Herbin R. A nine-point finite volume scheme for the simulation of diffusion in het- erogeneous media[J]. Comptes Rendus Mathematique, 2009, 347(11): 673-676.
  • 9Gao Z M, Wu J M. A small stencil and extremum-preserving scheme for anisotropic diffusion problems on arbitrary 2D and 3D meshes[J]. Journal of Computational Physics, 2013, 250:308-331.
  • 10Berman A and Plemmons R J. Nonnegative matrices in the mathematical sciences[M]. Academic Press, New York, 1979.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部