摘要
在赋范线性空间中研究了含参Ky Fan不等式与对偶问题.在给出含参Ky Fan不等式与对偶问题有效解概念的基础上,借助伪单调和强凸(凹)映射的基本假设,分别讨论了含参Ky Fan不等式有效解映射与对偶问题有效解映射的Lipschitz连续性.结果表明,含参Ky Fan不等式问题有效解映射与对偶问题有效解映射的Lipschitz连续性具有一致性.
The parametric primal and dual Ky Fan inequalities are studied in normed linear space.On the basis of the concepts of efficient solutions to the parametric primal and dual Ky Fan inequalities, using the basic assumptions of pseudomonotone and strongly convex(concave) mappings, the Lipschitz continuity for solution mappings of the parametric primal and dual Ky Fan inequalities are established.The results show that the Lipschitz continuity of solution mappings for the parametric primal and dual Ky Fan inequalities is consistent.
作者
孟旭东
蒋海英
曾慧平
MENG Xu-dong;JIANG Hai-ying;ZENG Hui-ping(College of Arts and Sciences,Science College,Nanchang Hang Kong University,Gongqingcheng 332020,China;Basic Teaching Department,Jiangxi V&T College of Communication,Nanchang 330013,China)
出处
《东北师大学报(自然科学版)》
CAS
北大核心
2022年第3期31-36,共6页
Journal of Northeast Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目(11201216)
江西省教育厅科学技术重点研究项目(GJJ181565,GJJ191614,GJJ218701)
南昌航空大学校级重点科学技术研究项目(KJKT2108)。