期刊文献+

基于机器学习的混合级联网络入侵检测方法 被引量:2

Hybrid cascade network intrusion detection method based on machine learning
下载PDF
导出
摘要 入侵检测系统可以识别异常模式和流量,并对系统中未授权活动进行监测、检测和响应,是网络安全领域的重要研究方向。文章对当前网络环境下入侵数据维度高的问题进行分析,总结了常见的特征选择降维方法,并根据不同的入侵检测方法在实际应用中的优缺点,提出混合级联的检测思路,在提高检测准确率的同时兼顾效率。 Intrusion detection system can identify abnormal patterns and traffic, and monitor, detect and respond to unauthorized activities in the system. It is an important research direction in the field of network security. This paper analyzes the problem of high dimensionality of intrusion data in the current network environment, summarizes the common feature selection dimensionality reduction methods, and puts forward a hybrid cascade detection idea according to the advantages and disadvantages of different intrusion detection methods in practical application, which takes into account the efficiency while improving the detection accuracy.
作者 李志峰 高玉琢 Li Zhifeng;Gao Yuzhuo(College of Information Engineering,Ningxia University,Ningxia 750000,China)
出处 《无线互联科技》 2022年第13期18-20,共3页 Wireless Internet Technology
基金 研究生创新项目,项目编号:GIP2021056。
关键词 入侵检测 特征选择 混合级联 intrusion detection feature selection hybrid cascade
  • 相关文献

参考文献3

二级参考文献62

  • 1Abbes T, Bouhoula A, Rusinowitch M. Protocol analysis in intrusion detection using decision tree[A]. Proceeding of the International Conference on Information Technology: Coding and Computing (ITCC'04) [C]. Los Alamitos, USA:IEEE Computer Society Press, 2004. 404-409.
  • 2Kruegel C, Toth T. Using decision trees to improve signature-based intrusion detection[A]. Proceeding of RAID'2003 [C]. Berlin Heidelberg New York: Springer-Verlag, 2003.173-191.
  • 3Erbacher R F, Frincke D. Visualization in detection of intrusions and misuse in large scale networks[A]. Proceeding of the International Conference on Information Visualization '2000[C]. Los Alamitos, USA: IEEE Computer Society Press, 2000. 294-299.
  • 4Spitzner L. The honeynet project: Trapping the hackers[J]. IEEE Security and Privacy, 2003, 1(2): 15-23.
  • 5Anderson J P.Computer security thread monitoring and surveillance[R]. Fort Washington, USA: James P Anderson Co, 1980.
  • 6Denning D E. An intrusion-detection model[J]. IEEE Transactions on Software Engineering, 1987, 13(2): 222-232.
  • 7Kahn C, Porras P, Staniford-Chen, et al. A common intrusion detection framework[EB/OL]. 1998. http:/www.isi.edu/gost/cidf/papers/cidf-jcs.ps.
  • 8Teng H S, Chen K, Lu S C. Security audit trail analysis using inductively generated predictive rules[A]. Proceeding of the Sixth Conference on Artificial Intelligence Applications[C]. Los Alamitos, USA: IEEE Computer Society Press, 1990. 24-29.
  • 9Crosbie M, Spafford E. Applying genetic programming to intrusion detection[R]. West Lafayette, USA: Purdue University, Department of Computer Sciences, 1995.
  • 10Lane T, Brodley C E. Temporal sequence learning and data reduction for anomaly detection[J].ACM Transactions on Information and System Security, 1999, 2(3): 295-331.

共引文献67

同被引文献16

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部