摘要
5G技术的发展,计算机视觉的应用场景得到了空前的发展。随着飞桨框架的不断完善,越来越多的开发者开始使用飞桨框架。为了保证百度飞桨框架的正确性与稳定性,文章复现了paddle框架paddle.nn.UpsamplingNearest2D并从参数覆盖、正确性验证、数据类型覆盖、异常输入等方面对UpsamplingNearest2D进行了单元测试。
The development of 5G technology, the application scene of computer vision has been an unprecedented development.As the flying paddle frame continues to improve, more and more developers began to use the flying paddle frame. In order to ensure the correctness and stability of Baidu paddle framework, the article reproduces the paddle framework paddle.nn. UpsamplingNearest2D and tested UpsamplingNearest2D from the aspects of parameter coverage, correctness verification, data type coverage and abnormal input.
作者
葛钰峣
郭昱汝
周桢洋
Ge Yuyao;Guo Yuru;Zhou Zhenyang(North China University of Technology,Beijing 100144,China)
出处
《无线互联科技》
2022年第14期134-136,共3页
Wireless Internet Technology
关键词
飞桨
深度学习
单元测试
图像处理
flying paddle
deep learning
unit test
image processing