期刊文献+

一种新型可变增益高阶滑模跟踪微分器

A new high-order sliding mode tracking differentiator with variable gain
下载PDF
导出
摘要 针对传统高阶滑模跟踪微分器产生的超调较大和噪声抑制能力较差的问题,提出一种新型可变增益高阶滑模跟踪微分器.该微分器通过改进传统高阶滑模跟踪微分器的结构,以此减少响应阶段的超调;通过引入Sigmoid变增益函数使增益能够根据跟踪误差的大小进行自动改变,以此平衡响应速度与滤波效果.数值仿真结果表明,该新型可变增益高阶滑模跟踪微分器所产生的超调不仅小于传统高阶滑模跟踪微分器所产生的超调,而且其滤波效果在不降低响应速度的前提下也显著优于传统高阶滑模跟踪微分器.因此,该新型微分器在提高含噪声信号高阶导数的估计精度方面具有良好的应用前景. Aiming at the problems that the traditional high-order sliding mode tracking differentiator has significant overshoot and the noise suppression ability is poor,a new variable gain high-order sliding mode tracking differentiator is proposed.The proposed differentiator improves the structure of the traditional high-order sliding mode tracking differentiator to reduce the overshoot in the response stage.By introducing the Sigmoid variable gain function,the gain can be automatically changed to the size of the tracking error,so as to balance the response speed and the filtering performance.Numerical simulation results show that the overshoot produced by the new variable gain high-order sliding mode tracking differentiator proposed in this paper is not only smaller than the overshoot produced by the traditional high-order sliding mode tracking differentiator,but its filtering performance is also significantly better than the traditional high-order sliding mode tracking differentiator without reducing the response speed.Therefore,the new differentiator has a good application prospect for improving the estimation accuracy of high-order derivatives of noisy signals.
作者 赵左平 于靖东 金山海 ZHAO Zuoping;YU Jingdong;JIN Shanhai(College of Engineering,Yanbian University,Yanji 133002,China)
机构地区 延边大学工学院
出处 《延边大学学报(自然科学版)》 CAS 2022年第2期179-185,共7页 Journal of Yanbian University(Natural Science Edition)
基金 国家自然科学基金(61963035) 吉林省教育厅科学技术研究项目(JJKH20210569KJ)。
关键词 滑模跟踪微分器 超调 噪声抑制 可变增益 高阶导数 sliding mode tracking differentiator overshoot noise suppression variable gain derivativer of higher order
  • 相关文献

参考文献4

二级参考文献18

共引文献461

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部