摘要
如果有高精度的蘑菇毒性判别模型,可以减少人们误食的概率,为实现方便高效的判别蘑菇毒性的方法,提升农业智能化发展,提出一种基于Stacking集成学习的蘑菇识别方法.首先,对数据集的各项特征进行预处理.其次,通过特征重要性排序,筛选出孢子颜色、环的数量、菌褶、内菌幕颜色、气味等区分毒性的重要特征.最后,构建Stacking模型并和其他模型对比分析,结果表明在准确率、召回率、F-score和AUC方面,Stacking和其他方法模型相比均占优势.基于Stacking集成学习的方法能一定程度解决蘑菇毒性判断复杂、准确度不高的问题,提升农业智能化发展的进程.
If there is a high-precision discriminatory model,it can reduce the probability of people accidentally eating.A convenient and efficient discrimination method is used to identify the toxicity of mushroom,which enhances the intelligent development of agriculture.A method about identifying the toxicity of mushroom based on Stacking learning was proposed.Firstly,we pre-processing the data set of the features.Secondly,selecting the important features including spore-print-color,ring-number,gill-size,veil-color and odor.Thirdly,by comparing stacking model with other models,stacking method is better than those middels interms of accuracy,recall,F-score and AUC.Therefore,the method based on stacking ensemble can solve the identification of the toxicity of mushrooms.Moreover,the high-precision model promotes the process of agricultural intelligent development.
作者
杨冰清
高珊
YANG Bingqing;GAO Shan(School of Mathematics and Statistic,Fuyang Normal University,236037,Fuyang,Anhui,China)
出处
《淮北师范大学学报(自然科学版)》
CAS
2022年第3期17-21,共5页
Journal of Huaibei Normal University:Natural Sciences
基金
安徽省教育科学研究项目(JK21036)
阜阳师范大学人文社科项目(2021FSSK15)。
关键词
蘑菇毒性
集成学习
判别分析
toxic of mushroom
Stacking ensemble
discriminant analysis