摘要
在Banach空间中探讨一类具有非瞬时脉冲的一阶积-微分方程适度解的存在性.在预解算子非紧的条件下,利用算子半群理论、非紧性测度理论和Darbo不动点定理,得到该类方程适度解的存在性结论.
In this paper, the existence of mild solutions for a class of first-order integro-differential equations with non-instantaneous impulses in Banach spaces is studied. By using the operator semigroup theory, noncompact measure theory and Darbo’s fixed point theorem, the existence of mild solution is obtained under the condition that the presolution operator is not compact.
作者
吴博
范虹霞
WU Bo;FAN Hongxia(College of Mathematics and Physics,Lanzhou Jiaotong University,Lanzhou 730070,China)
出处
《扬州大学学报(自然科学版)》
CAS
北大核心
2022年第3期5-11,共7页
Journal of Yangzhou University:Natural Science Edition
基金
国家自然科学基金资助项目(11561040)。
关键词
非瞬时脉冲
积-微分方程
预解算子
非紧性测度
适度解
non-instantaneous impulse
integro-differential equation
resolvent operator
noncom-pact measure
mild solution