期刊文献+

开放环境下自适应聚类优化包络的相机来源取证 被引量:1

Envelope Optimization Based on Adaptive Clustering for Open-Set Camera Model Identification
下载PDF
导出
摘要 针对相机来源取证中的开放环境问题,本文提出一种自适应聚类优化包络的相机来源取证方法,解决了现有方法在训练相机模型数量少的恶劣情况下检测精度低的问题.首先,通过手肘法得到每一类相机数据的聚类个数,并以该聚类数为参照进行k-means聚类;然后将得到的相机模型子类数据分别进行支持向量数据描述以刻画其子包络,并根据所属相机模型类别将子包络合成一个更具细节特征的特征包络;最后通过判决法则将来自未知相机模型的图像排除,并将判断为已知来源的图像分类溯源,进而实现开放环境下的相机来源鉴别.实验结果表明,在Dresden和SOCRatES两个公开数据集上,本文提出的算法具有更优的鲁棒性和扩展性,与已有方法相比,在KACC,UACC和OACC三个评估指标和时间复杂度上均表现出更优越的性能. In this paper,an envelope optimization based on adaptive clustering for open-set camera model identification is proposed for the open-set problem of source camera identification,which solved the problem of low detection accuracy of the existing methods in the bad situation with few known camera models.Firstly,the clustering number of each type of camera data is obtained by the elbow method,and k-means clustering is performed with this clustering number as the reference.Then the sub-class data of the camera model are described by the technique of support vector data description,respectively to describe its hypersphere sub-envelope,and the sub-envelope is synthesized into a new hypersphere envelope with more detailed features according to the class of the camera model.Finally,the images from unknown camera models are excluded by the decision rule,and the images from known sources are classified and traceable to achieve source camera identification in the open-set.Experimental results on the two public datasets Dresden and SOCRatES show that the method proposed in this paper has better robustness and scalability.Compared with the existing methods,the three evaluation indicators of KACC,UACC,and OACC and time complexity are superior.
作者 王波 王悦 王伟 侯嘉尧 WANG Bo;WANG Yue;WANG Wei;HOU Jia-yao(Faculty of Electronic Information and Electrical Engineering,Dalian University of Technology,Dalian,Liaoning 116024,China;Center for Research on Intelligent Perception and Computing(CRIPAC),Institute of Automation,Chinese Academy of Sciences,Beijing 100190,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2022年第8期1840-1850,共11页 Acta Electronica Sinica
基金 国家自然科学基金(No.U1936117,No.62106037,No.62076052,No.61772111) 大连市科技创新基金(No.2021JJ12GX018) 模式识别国家重点实验室开放课题基金(No.202100032) 中央高校基本科研业务费专项资金(No.DUT21GF303,No.DUT20TD110,No.DUT20RC(3)088)。
关键词 开放环境 数字图像取证 相机来源鉴别 手肘法 聚类包络优化 open-set digital image forensics source camera identification elbow method envelope of clustering optimization
  • 相关文献

参考文献2

二级参考文献18

  • 1Farid H. Digital image forensics [J]. Science American, 2008, 296(6): 66-71.
  • 2Geradts Z, Bijhold J, Kieft M, et al. Methods for identification of images acquired with digital cameras [C]// Proe of SPIE, Enabling Technologies for Law Enforcement and Security. Bellingham, WA: SPIE Press, 2000:505-512.
  • 3Lukdas J, Fridrich J, Goljan M. Detecting digital image forgeries using sensor pattern noise [C] //Proc of Security, Steganography, and Watermarking of Multimedia Contents VIII, SHE Electronic Imaging. Bellingham, WA: SPIE Press, 2006:362-372.
  • 4Lukas J, Fridrich J, Goljan M. Digital "bullet scratches" for images [C] //Proc of IEEE Int Conf on Image Processing, ICIP2005. Piscataway, NJ: IEEE, 2005:111-65-68.
  • 5Kharrazi M, Sencar H T, Memon N. Blind source camera identification [C] //Proc of IEEE Int Conf on Image Processing(ICIP2004). Piscataway, NJ: IEEE, 2004:709-712.
  • 6Tsai M J, Wu G H. Using image features to identify camera sources [C] //Proc of IEEE Int Conf on Acoustics, Speech and Signal Processing ( ICASSP2006 ). Piscataway, NJ: IEEE, 2006:II-297-300.
  • 7Choi K S, Lam E Y, Wong K Y. Automatic source camera identification using the intrinsic lens radial distortion [J].Optics Express, 2006, 14(24): 11551-11565.
  • 8Meng Fanjie, Kong Xiangwei, You Xingang. A new feature -based method for source camera identification [C] //Proc of IFIP WG 11.9 Int Conf on Digital Forensies. Berlin: Springer, 2008:207-218.
  • 9Bayram S, Sencar H T, Memon N, et al. Source camera identification based on CFA interpolation [C] //Proc of IEEE Int Conf on Image Processing(ICIP2005). Piscataway, NJ: IEEE, 2005: III-69-72.
  • 10Bayram S, Sencar H T, Memon N. Improvements on source camera-model identification based on CFA interpolation [C] //Proc of IFIP Working Group 11.9 on Digital Forensics. Berlin: Springer, 2006:24-27.

共引文献7

同被引文献18

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部