期刊文献+

SMGN:用于对话状态跟踪的状态记忆图网络

SMGN:A State Memory Graph Network for Dialogue State Tracking
下载PDF
导出
摘要 对话状态跟踪是任务型对话系统的重要模块.已有研究使用注意力机制模拟图结构来引入历史信息,但这种方法无法显式利用对话状态的结构性.此外,如何生成复杂格式的对话状态也为研究带来了挑战.针对以上问题,本文提出一种状态记忆图网络SMGN(State Memory Graph Network).该网络通过状态记忆图保存历史对话信息,并使用图结构与当前对话进行特征交互.本文还设计了一种基于状态记忆图的复杂对话状态生成方法.实验结果表明,本文提出的方法在CrossWOZ数据集上联合正确率提高1.39%,在MultiWOZ数据集上提高1.86%. Dialogue state tracking is an important module of task-oriented dialogue system.Previous studies exploited the historical dialogue information by attention-based graph structure simulation,but these methods cannot explicitly take advantage of the structure of the dialogue state.In addition,how to generate complex format dialogue states also brings challenges to research.In this paper,we propose a state memory graph network(SMGN).The network saves historical information through the state memory graph,and uses the graph to interact with the current dialogue.We also implement a complex dialogue state generation method based on state memory graph.Experimental results show that the proposed method improves the joint accuracy by 1.39%on the CrossWOZ dataset and 1.86%on the MultiWOZ dataset.
作者 张志昌 于沛霖 庞雅丽 朱林 曾扬扬 ZHANG Zhi-chang;YU Pei-lin;PANG Ya-li;ZHU Lin;ZENG Yang-yang(College of Computer Science and Engineering,Northwest Normal University,Lanzhou,Gansu 730070,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2022年第8期1851-1858,共8页 Acta Electronica Sinica
基金 国家自然科学基金(No.61762081) 甘肃省重点研发计划项目(No.17YF1GA016)。
关键词 任务型对话系统 对话状态跟踪 注意力机制 自然语言处理 深度学习 task-oriented dialogue system dialogue state tracking attention mechanism natural language processing deep learning
  • 相关文献

参考文献3

二级参考文献29

  • 1黄昌宁,赵海.中文分词十年回顾[J].中文信息学报,2007,21(3):8-19. 被引量:250
  • 2Hnang F, Vogel S, Waibel A. Automatic extraction of named entity translingual equivalence based on multi-feature cost mini- mization[ A]. Proceedings of the ACL 2003 Workshop on MUI- tilingual and Mixed-Language Named Entity Recognition-Vol- ume 15 [ C ]. Stroudsburg, PA, USA: Association for Computa- tional Linguistics, 2003.9- 16.
  • 3Feng D, Lti Y, Zhou M. A new approach for English-Chinese named entity alignment[ A]. EMNLP. 2004E C1. Barcelona: As- sociation for Computational Linguistics,2004. 372- 379.
  • 4Lee C J,Chang J S,Jang J S R. Alignment of bilingual named entities in parallel corpora using statistical models and multiple knowledge sourees[ J] .ACM Transactions on Asian Language Information Processing(TALIP), 2006,5 (2) : 121 - 145.
  • 5Moore R C. Learning translations of named-entity phrases from parallel corpora [ A ]. Proceedings of the tenth Conference on European Chapter of the Association for Computational Lin- guistics- Volume 1 [ C ]. Budapest: Association for Computational Linguistics, 2003.259 - 266.
  • 6Ji H, Grishman R. Collaborative entity extraction and translation [J]. Recent Advances in Natural Language Processing V:Se- lected Papers from RANLP 2007,2009,309:73 - 84.
  • 7Che W, Wang M, Manning C D, et al. Named entity recogni- tion with bilingual constraints[ A] Proceedings of HLT-NAA- CL [ C ]. Atlanta: Association for Computational Linguistics, 2013.52 - 62.
  • 8Wang M, Che W, Manning C D. Joint word alignment and bilingual named entity recognition using dual decomposition [ A]. Proceedings of the 51 st Annual Meeting of the Associa- tion for Computational Linguistics [ C ]. Sofia: Association for Computational Linguistics,2013.1073- 1082.
  • 9Chen Y, Zong C, Su K Y. A joint model to identify and align bilingual named entities[ J]. Computational Linguistics, 2013,39 (2) : 229 - 266.
  • 10Chang P C, Galley M, Manning C D. Optimizing Chinese word segmentation for machine lranslation performance[ A ]. Proceedings of the Third Workshop on Statistical Machine Translation. Association for Computational Linguistics E C. 2008. 224 - 232.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部