期刊文献+

改进因果推断方法在发电机组辅机状态监测中的应用研究 被引量:1

Research of Improved Causal Inference Method Applied in Condition Monitoring System of Generator Set Auxiliary Equipment
下载PDF
导出
摘要 数据分析技术是建设智慧电厂的核心要素,目前的大多数数据分析技术是利用数据间的强相关关系,因果推断技术的发展为利用两个强相关变量中呈现的因果不对称性发现可靠因果关系提供了有力工具。针对因果推断技术用于实际设备中模型难以选择、模型有效性和准确率无法判断的问题,本文提出一种基于因果函数的改进因果推断方法,并以一种新的角度使用因果效应强度变化监测系统运行状态。首先根据专家知识设置强、非因果关系,引入因果关系保持率CRR、因果信息不对称度DDA,改进因果关系模型的选择和评估过程。最后通过滑动窗口结合倾向得分匹配计算各方向因果效应强度用以监测系统状态。在某一次风机的系统算例中验证表明,改进因果推断方法能有效验证不同因果模型的有效性和准确度,优化因果发现过程,结合所选LiNGAM模型构建了合理可信的因果关系网络。根据因果关系网络通过因果效应强度的变化成功跟踪表征了系统状态,并发现了原始数据中无法发现的系统状态恶化节点。 As the core element of building smart power plant.At present,most data analysis technologies use the strong correlation between data.The development of causal inference technology provides a powerful tool to find reliable causal relationship by using the causal asymmetry presented in two strongly correlated variables.Aiming at the problems that it is difficult to select the model and judge the validity and accuracy of the model when the causal inference technology is used in practical equipment.An improved causal inference method based on causal function is proposed in this paper,and the operation state of the system is monitored by the change of causal effect intensity from a new perspective.Firstly,strong and non-causal relationships are set according to expert knowledge,and the causal relationship retention rate CRR and causal information asymmetry DDA are introduced to improve the selection and evaluation process of causal relationship model.Finally,the strength of causal effect in each direction is calculated by sliding window combined with propensity score matching to monitor the state of the system.In a system example of a primary air fan,the verification shows that the improved causal inference method can effectively verify the effectiveness and accuracy of different causal models,optimize the causal discovery process,build a reasonable and reliable causal network combined with the selected LiNGAM model,successfully track the system state through the change of causal effect intensity according to the causal network,and find the system state deterioration nodes that cannot be found in the original data.
作者 岳健国 郭瑞 傅行军 田新启 宗曜犇 王旭 Jian-Guo Yue;Rui Guo;Xing-Jun Fu;Xin-Qi Tian;Yao-Ben Zong;Xu Wang(National Engineering Research Center of Power Generation Control and Safety;School of Energy and Environment,Southeast University)
出处 《风机技术》 2022年第4期74-80,共7页 Chinese Journal of Turbomachinery
基金 江苏省基础研究计划(自然科学基金)青年基金项目(BK20210240)。
关键词 旋转机械 因果推断 状态监测 因果发现 倾向匹配得分 Generator Shaft System Causal Inference Condition Monitoring Causal Discovery Propensity Matching Score
  • 相关文献

参考文献6

二级参考文献29

  • 1钟秉林,颜廷虎.基于基因遗传算法的概率因果诊断模型[J].机械工程学报,1995,31(6):34-39. 被引量:5
  • 2陆宁云,王福利,高福荣,王姝.间歇过程的统计建模与在线监测[J].自动化学报,2006,32(3):400-410. 被引量:61
  • 3陈长征.旋转机构智能诊断方法研究[M].徐州:中国矿业大学,1998..
  • 4[2]H.S(o)ker,H.Seifert; DEWI Preventive Load Monitoring and Condition Monitoring-How to Reach the Scheduled Service Life without Financial Damage DEWI Magazin Nr.23,August 2003.
  • 5[3]The condition monitoring magazine of PRüFTECHNIK AG and Flender Service GmbH No.05-September 2003.
  • 6[4]www.pruftechnik.hk.cn
  • 7李俊峰,施鹏飞.中国风电发展报告2010[R].海口:海南出版社,2010.
  • 8陈长征,学位论文,1998年
  • 9Yuan Peng,IEEE Trans Syst Man Cybernet,1989年,19卷,2期,285页
  • 10Yuan Peng,IEEE Trans Syst Man Cybernet,1987年,17卷,3期,395页

共引文献88

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部