期刊文献+

基于再生核的样条插值求解积分方程

Solving Integral Equation by Using Spline Interpolation Based on Reproducing Kernel
下载PDF
导出
摘要 研究第二类积分方程的算法。首先由再生核函数的特殊性简洁地构造一次样条函数空间的一组基底;接着在这个基底下给出这类积分方程的有效算法;然后证明该算法的收敛阶为二阶;最后依照这种算法做了一些数值实验,并与文献中给出的其他算法比较,结果说明本研究算法更有效。 The algorithm of the second type of integral equation is studied in the paper. Firstly,a set of bases for the space of the primary spline function is concisely constructed based on the particularity of the reproducing kernel function. And then,an effective algorithm for this type of integral equation is given under this base. Furthermore,it is proved that the convergence order of the algorithm is not less than two-order.Finally,some numerical experiments according to this algorithm prove that the algorithm given in this paper is more effective compared with other algorithms given in the literatures.
作者 张瑞敏 林迎珍 张娇霞 ZHANG Rui-min;LIN Ying-zhen;ZHANG Jiao-xia(School of Applied Science and Civil Engineering,Beijing Institute of Technology,Zhuhai,Zhuhai 519088,Guangdong,China)
出处 《内蒙古师范大学学报(自然科学版)》 CAS 2022年第5期511-514,共4页 Journal of Inner Mongolia Normal University(Natural Science Edition)
基金 北京理工大学珠海学院2020年校级教改资助项目(2020024JXGG)。
关键词 第二类积分方程 一次样条空间基底 一次样条插值 再生核函数 收敛阶 integral equation of the second kind linear spline space base linear spline interpolation reproducing kernel convergence order
  • 相关文献

参考文献3

二级参考文献16

  • 1吴静.第二类Fredholm积分方程的快速数值解法[J].广东轻工职业技术学院学报,2004,3(1):1-5. 被引量:2
  • 2余爱晖,金怡.用带参数的三次样条插值方法解两点边值问题[J].杭州师范学院学报(自然科学版),2007,6(1):33-36. 被引量:1
  • 3Dehghan M, Shakourifar M, Hamidi A. The Solution of Linear and Nonlinear Systems of Volterra Functional Equations Using Adomian-Pade Technique[J]. Chaos, Solitons and Fractals, 2009, 39 (5): 2509-2521.
  • 4DUANJunsheng. An Efficient Algorithm for the Multivariable Adomian Polynomials[J]. Applied Mathematics and Computation. 2010. 217(6): 2456-2467.
  • 5BiazarJ, Eslami M. Modified HPM for Solving Systems of Volterra Integral Equations of the Second Kind[J]. Journal of King Saud University Science. 2011, 23(1): 35-39.
  • 6BiazarJ. Ebrahimi H. Chebyshev Wavelets Approach for Nonlinear Systems of Volterra Integral Equations[J]. Computers and Mathematics with Applications, 2012, 63(3): 608-616.
  • 7Blanco-Cocom L, Estrella A G, Avila-Vales E. Solving Delay Differential Systems with History Functions by the Adomian Decomposition Method[J]. Applied Mathematics and Computation, 2012, 218(10): 5994-6011.
  • 8J afarian A, Nia S M, Golmankhaneh A K, et al. On Bernstein Polynomials Method to the System of Abel Integral Equations[J/OL]. Abstract and Applied Analysis, 2014-05-07. http://dx.doi. org/10. 1155/2014/796286.
  • 9Wazwaz A M, Rach R. DUAN .lunsheng. A Study on the Systems of the Volterra Integral Forms of the LaneEmden Equations by the Adomian Decomposition Method[J]. Mathmatical Method in the Applied Sciences, 2014. 37(1): 10-19.
  • 10DUAN[unsheng , Rach R, Baleanu D, et al. A Review of the Adomian Decomposition Method and Its Applications to Fractional Differential Equations[J]. Communications in Fractional Calculus, 2012, 3(2): 73-99.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部