摘要
为研究一般连通拟阵的二阶圈图的哈密顿性,选取完全二部图K_(2,n)和K_(3,n)进行讨论,证明这两类圈拟阵的二阶圈图的哈密顿性,并证明K_(2,n)的圈拟阵的二阶圈图的连通度和泛圈性,对K_(2,n),K_(3,n)的圈拟阵的二阶圈图的一致哈密顿性提出了一个猜想。
The Hamiltonian properties of the second-order circuit graphs of general connected matroids are studied in the paper. The complete bipartite graphs K_(2,n) and K_(3,n) are selected for discussion to prove the Hamiltonian property of the second-order circuit graphs of the two kinds of circuit matroids and the connectivity and pancyclic property of the second-order circuit graphs of the circuit matroids of K_(2,n). Also,a conjecture on the consistent Hamiltonian property of the second-order circuit graphs of the circuit matroids of K_(2,n) and K_(3,n) is proposed in the paper.
作者
李亚宁
刘彬
邓梓健
王丽煊
火博丰
尹君
LI Ya-ning;LIU Bin;DENG Zi-jian;WANG Li-xuan;HUO Bo-feng;YIN Jun(College of Mathematics and Statistics,Qinghai Normal University,Xining 810008,China;Key Laboratory of the Internet of Things of Qinghai Province,Xining 810008,China)
出处
《内蒙古师范大学学报(自然科学版)》
CAS
2022年第5期540-544,共5页
Journal of Inner Mongolia Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目(11961055,11801296)。
关键词
连通拟阵
完全二部图
二阶圈图
哈密顿性
connected matroid
complete bipartite graphs
the second-order circuit graphs
Hamiltonian property