摘要
圈的嵌入是对互连网络的图嵌入问题研究的重点之一,它可以用图的泛圈性来衡量.连通圈网络DSCC(k)是在师海中等(2018)提出的一种新互连网络,泛圈性是判断一个网络拓扑是否适合将不同长度圈映射到其上的重要测量值.文中利用引理2的结果给出了任一Hamilton平面连通图与K_(2)笛卡尔乘积的泛圈性,并证明了其是偶泛圈的.且在该结论的基础上,得到并证明了DSCC(k)×K_(2)(k≥1)是泛圈的.
Circle embedding is one of the key points in the study of graph embedding of interconnection network.It can be measured by the pancyclicity of graph.Connected circle network DSCC(k)is a new interconnection network proposed by Shi et al(2018),Pancyclicity is an important measure to determine whether a network topology is suitable for mapping different length cycles onto it.In this paper,using the results of the lemma 2 is given either Hamilton plane connected graph and K_(2) cartesian product of pancyclicity,and prove its bipancyclic.And on the basis of this conclusion,get and proves that the DSCC(k)×K_(2)(k≥1)is pancyclic.
作者
张治成
ZHANG Zhi-cheng(College of Science,Shihezi University,Shihezi 832003,China)
出处
《高校应用数学学报(A辑)》
北大核心
2022年第3期345-349,共5页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金
国家自然科学基金(12161076)。