摘要
本文研究了具有取消订货和共有寿命的非抢占优先权排队库存系统,其中顾客到达服从泊松过程,服务时间服从指数分布.我们构建了一个水平相依的拟生灭过程(LDQBD过程),并利用Neuts-Rao截断法得到了系统的平稳条件和稳态概率向量,同时给出了一些性能指标和期望成本函数.通过数值模拟,我们得到了最优库存容量和最小成本.最后,我们通过对系统参数的敏感性分析,给管理者提供了一些有益的建议.
A queueing-inventory system with cancellation,common life time and non-preemptive priority is considered,in which customer arrives according to a Poisson process and service time follows an exponentially distribution.By formulating the system process into a level-dependent quasi-birth-anddeath process(LDQBD),the stability condition and steady-state probability vectors under Neuts-Rao truncation method are obtained.Some performance measures and expected cost function are also given.Then,the optimal maximum inventory level and minimum cost are achieved through numerical simulations.Finally,the sensitivities analysis on major parameters are performed to provide more managerial insights.
作者
罗煦香
刘再明
LUO Xuxiang;LIU Zaiming(School of Mathematics and Big Data,Foshan University,Foshan,528000,China;School of Mathematical and Statistics,Central South University,Changsha,410083,China)
出处
《应用概率统计》
CSCD
北大核心
2022年第4期531-545,共15页
Chinese Journal of Applied Probability and Statistics
基金
粤港澳智能微纳光电技术联合实验室(批准号:2020B1212030010)
国家自然科学基金项目(批准号:12071487)资助.