期刊文献+

机器学习和深度学习的并行训练方法 被引量:1

Parallel Training Methods for Machine Learning and Deep Learning
下载PDF
导出
摘要 并行计算技术广泛用于对一些特定问题进行更进一步的优化,从而突破性地降低算法的时间消耗。近年来,随着大数据和人工智能的快速发展,在进行大规模深度学习模型的训练时,时间消耗成为一个重要的考虑因素。在模型的训练过程中,由于各个样本之间互不相关的性质,使得模型的训练过程可以利用并行技术来很好地优化。本文以最基础的线性回归作为模型的任务,测试了并行化方法在深度学习模型中的可行性,并对比了不同节点下的性能提升幅度。本文所提出的并行训练方法的时间复杂度为O(m/k×P+k×ϵ),根据该时间复杂度,可以合理地根据待解决问题的规模来选择合适的并行化策略。 Parallel computing techniques are widely used for further optimization of specific problems,enabling breakthrough improvements of algorithm time complexity.In recent years,with the rapid development of big data and artificial intelligence,time consumption has become an important consideration when training large-scale deep learning models.The training process of the model can be optimized by parallel techniques due to the uncorrelated nature of the samples.In this paper,we test the feasibility of parallelization methods in deep learning models with the most basic linear regression as the task of the model,and compare the per⁃formance improvement under different nodes.The time complexity of the parallel training method proposed is O(m/k×P+k×ϵ).Based on this time complexity,it is reasonable to choose the appropriate parallelization strategy based on the size of the problem to be solved.
作者 祝佳怡 Zhu Jiayi(College of Computer Science and Engineering,Southwest Minzu University,Chengdu 610225)
出处 《现代计算机》 2022年第14期42-48,共7页 Modern Computer
关键词 并行计算 机器学习 深度学习 最优化 parallel computing machine learning deep learning optimization
  • 相关文献

参考文献1

二级参考文献23

  • 1陈国良,梁维发,沈鸿.并行图论算法研究进展[J].计算机研究与发展,1995,32(9):1-16. 被引量:13
  • 2Chen G L, Sun G Z, Zhang Y Q, et al. Study on parallel computing. J Comput Sci Tech, 2006.21(5): 665--673.
  • 3Grama A, Gupta A, Karypis G, et al. Introduction to parallel computing. Boston: Benjaming/Cummings Publish Company, Inc., 2003.
  • 4Chen G L. A partitioning selection algorithm on multiprocessors. J Comput Sci Tech, 1988, 3(4): 241--250.
  • 5Zhang F, Chen G L, Zhang Z Q. OpenMP on Networks of Workstations for Software DSMs. J Comput Sci Tech, 2002, 17(1): 90--100.
  • 6Sutter H, Larus J. Software and the concurrency revolution. Q focus: Multiprocessors, 2005, 3(7): 54--62.
  • 7Rajkumar B, Chee S Y, Srikumar V. Market-oriented cloud computing: Vision, hype, and reality for delivering IT services as computing utilities. In: Proceedings of the 10th IEEE International Conference on High Performance Computing and Communications, 2008 Sept 25-27, Dalian. Los Alamitos, CA: IEEE CS Press, 2008. 15--22.
  • 8Asanovic K, Bodik R, James J, et al. The landscape of parallel computing research: A view from Berkeley. Technical Report, Electrical Engineering and Computer Sciences, University of California, Berkeley. 2006.
  • 9Zhang Y Q, Chen G L, Sun G Z, et al. Models of parallel computation: a survey and classification. Front Comput Sci China, 2007, 1(2): 156--165.
  • 10Sun X H. Scalable computing in the multicore era. In: Proceedings of the Inaugural Symposium on Parallel Algorithms, Architechures and Programming, 2008 8ep 16-18, Hefei. Hefei: University of Science and Technology of China Press, 2008. 1--18.

共引文献95

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部