摘要
为了解决配电变压器的检测困难、实时预警设备状态、保证配电台区的供电质量,从分析配电台区的组成结构及设备监管要求着手,利用物联网技术设计三层智能网络结构,并采用皮尔逊积矩系数关联分析及格兰杰检验因果分析实现概率挖掘算法,以此定位故障影响因子。针对关联性强的因子构建故障预警模型,通过实例数据证明主变高导致故障的概率最高可达到71.4%,为挖掘配电变压器故障影响因素、提升运维人员工作效率提供了技术手段,实现了配电变压器的状态在线监测与智能诊断。
In order to solve the distribution transformer detection difficult, real-time warning equipment status, ensure the quality of the power supply of distribution area, on the analysis of the structure and equipment distribution area regulatory requirements, using Internet technology to design three layer structure of intelligent network, and uses the coefficient of Pearson product moment correlation analysis and granger causality analysis implementation probability mining algorithm, to locate fault impact factor. The fault warning model is built for the factors with strong correlation, and the example data proves that the maximum fault probability caused by the main variable height could reach 71.4%. It provides a technical means for mining the influence factors of distribution transformer faults, improving the working efficiency of operation and maintenance personnel, and realizes the online monitoring and intelligent diagnosis of distribution transformer status.
作者
雷炳银
欧阳强
蔡光德
杨灵艺
徐立军
LEI Bing-yin;OU Yang-qiang;CAI Guang-de;YANG Ling-yi;XU Li-jun(Pinggao Group Co.,Ltd.,Pingdingshan 467001 China)
出处
《自动化技术与应用》
2022年第9期29-31,68,共4页
Techniques of Automation and Applications
基金
平高集团自筹科技项目(PGKJ2019-046)。
关键词
物联网
配电设备
智能诊断
皮尔逊积矩系数
格兰杰检验
Internet of Things
distribution equipment
intelligent diagnosis
Pearson product moment coefficient
Granger test