期刊文献+

知识增强策略引导的交互式强化推荐系统

Knowledge-enhanced policy-guided interactive reinforcement recommendation system
下载PDF
导出
摘要 推荐系统是解决社会媒体信息过载问题的重要手段。为了解决传统推荐系统无法优化用户长期体验的问题,研究人员提出了交互式推荐系统,并尝试使用深度强化学习优化推荐策略。但是,强化推荐算法面临反馈稀疏、从零学习影响用户体验、物品空间大等问题。为了解决上述问题,提出一种改进的知识增强策略引导的交互式强化推荐模型KGP-DQN。该模型构建行为知识图谱表示模块,将用户历史行为和知识图谱结合,解决反馈稀疏问题;构建策略初始化模块,根据用户历史行为为强化推荐系统提供初始化策略,解决从零学习影响用户体验的问题;构建候选集筛选模块,根据行为知识图谱上的物品表示进行动态聚类,从而减少物品空间,解决动作空间大的问题。在3个真实数据集上进行了实验,实验结果表明,KGP-DQN可以快速有效地对强化推荐系统进行训练,其在3个数据集上的推荐准确率均超过80%。 The recommendation system is an important means to solve the problem of information overload in social media.To solve the problem that traditional recommendation systems cannot optimize the long-term user experience,researchers have proposed the interactive recommendation system and tried to use deep reinforcement learning to optimize the strategy of recommendation.However,the reinforcement recommendation algorithm faces problems such as sparse feedback,learning from zero which damages the user experience,and large item space.To solve the above problems,an improved interactive reinforcement recommendation model KGP-DQN was proposed.The model constructed a behavioral knowledge graph representation module,which combines user historical behavior and knowledge graph to solve the problem of sparse feedback.The model constructed a strategy initialization module to provide an initialization strategy for the reinforcement recommendation system based on user historical behaviors to solve the problem of learning from zero.The model constructed the candidate select module which creates candidates by dynamic clustering based on the item representation on the behavioral knowledge graph to solve the problem of large action space.The experiments were conducted on three real-world datasets.The experimental results show that the KGP-DQN method can quickly and effectively train the reinforcement recommendation system and its recommendation accuracy on three datasets is more than 80%.
作者 张宇奇 黄晓雯 桑基韬 ZHANG Yuqi;HUANG Xiaowen;SANG Jitao(School of Computer and Information Technology,Beijing Jiaotong University,Beijing 100044,China;Beijing Key Lab of Traffic Data Analysis and Mining,Beijing 100044,China)
出处 《大数据》 2022年第5期88-105,共18页 Big Data Research
基金 中央高校基本科研专项资金资助项目(No.2021RC217)。
关键词 交互式推荐系统 深度强化学习 知识图谱 策略初始化 候选集筛选 interactive recommendation system deep reinforcement learning knowledge graph policy initialization candidate select
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部