期刊文献+

Pb(Zn_(1/3)Nb_(2/3))_(0.2)(Hf_(1-x)Ti_(x))_(0.8)O_(3)陶瓷压电能量收集特性研究

Study on Piezoelectric Energy Harvesting Properties of Pb(Zn_(1/3)Nb_(2/3))_(0.2)(Hf_(1-x)Ti_(x))_(0.8)O_(3) Ceramics
下载PDF
导出
摘要 采用铌铁矿前驱体两步法制备了Pb(Zn_(1/3)Nb_(2/3))_(0.2)(Hf_(1-x)Ti_(x))_(0.8)O_(3)(PZNH_(1-x)T_(x))钙钛矿压电陶瓷,研究了铪钛比对陶瓷相结构、电学性能和能量收集特性的影响。结果表明,当x=0.52时,陶瓷样品位于准同型相界,具有最优综合压电性能:居里温度T_(C)=287℃,品质因数FOM≈14753×10^(-15) m^(2)/N,压电电荷常数d_(33)=492 pC/N。由该组成材料构建的悬臂梁型压电能量收集器输出功率密度高达4.16μW/mm^(3),所转化的电能可成功点亮138盏并联的LED灯。结果表明,PZNHT陶瓷在压电能量收集领域具有良好的应用潜力。 The Pb(Zn_(1/3)Nb_(2/3))_(0.2)(Hf_(1-x)Ti_(x))_(0.8)O_(3)(PZNH_(1-x)T_(x))perovskite piezoceramics were prepared by a two-step columbite precursor method.The effects of the ratio of Hf and Ti on the phase structure,electrical performance and energy harvesting characteristics were investigated.The results show that x=0.52 is located at the morphotropic phase boundary,and has the optimal comprehensive piezoelectric properties:Curie temperature T_(C) of 287℃,figure of merit FOM of 14753×10^(-15) m^(2)/N,piezoelectric charge constant d_(33) of 492 pC/N.In addition,the cantilever beam-type piezoelectric energy harvester constructed from x=0.52 sample exhibited an output power density of up to 4.16μW/mm^(3) and the generated power can successfully lit 138 parallel LED lights.The above results show that PZNHT ceramics have good application potential in the field of piezoelectric energy harvesting.
作者 于肖乐 侯育冬 郑木鹏 朱满康 YU Xiaole;HOU Yudong;ZHENG Mupeng;ZHU Mankang(Faculty of Materials and Manufacturing,Beijing University of Technology,Beijing 100124,China)
出处 《压电与声光》 CAS 北大核心 2022年第4期600-604,609,共6页 Piezoelectrics & Acoustooptics
基金 北京自然科学基金资助项目(2202008) 国家自然科学基金资助项目(51677001和52072010) 北京百千万人才基金资助项目(2019A25)。
关键词 钙钛矿陶瓷 弛豫铁电体 准同型相界 压电性 压电能量收集 perovskite ceramics relaxor-ferroelectrics morphotropic phase boundary piezoelectrity piezoelectric energy harvesting
  • 相关文献

参考文献1

二级参考文献46

  • 1PRIYA S, INMAN D J. Energy harvesting technologies [M]. Berlin: Springer–Verlag, 2009: 3–4.
  • 2PRIYA S. Advances in energy harvesting using low profile piezoelectric transducers [J]. J Electroceram, 2007, 19: 167–184.
  • 3MITCHESON P D, MIAO P, STARK B H, et al. MEMS electrostatic micropower generator for low frequency operation [J]. Sens Actuat A Phys, 2004, 115: 523–529.
  • 4EL-HAMI M, GLYNNE-JONES P, WHITE N M, et al. Design and fabrication of a new vibration-based electromechanical power generator [J]. Sens Actuat A Phys, 2001, 92: 335–342.
  • 5WILLIAMS C B, YATES R B. Analysis of a micro-electric generator for microsystems [J]. Sens Actuat A Phys, 996, 52: 8–11.
  • 6KEAWBOONCHUAY C, ENGEL T G. Maximum power generation in a piezoelectric pulse generator[J]. Ieee T Plasma Sci, 2003, 31: 123–128.
  • 7JANPHUANG P, LOCKHART R, UFFER N, et al. Vibrational piezoelectric energy harvesters based on thinned bulk PZT sheets fabricated at the wafer level [J]. Sens Actuat A Phys, 2014, 210: 1–9.
  • 8KIM H, PRIYA S, STEPHANOU H, et al. Consideration of impedance matching techniques for efficient piezoelectric energy harvesting [J]. Ieee T Ultrason Ferr, 2007, 54: 1851–1859.
  • 9PRIYA S. Criterion for material selection in design of bulk piezoelectric energy harvesters [J]. Ieee T Ultrason Ferr, 2010, 57: 2610–2612.
  • 10STEWART M, WEAVER P M, CAIN M. Charge redistribution in piezoelectric energy harvesters[J]. Appl Phys Lett, 2012, 100: 073901.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部