摘要
关于“数学分析”课程中涉及含参量积分一致收敛性的判别法,一般比较熟悉的有Cauchy准则、魏尔斯特拉斯M判别法、狄利克雷判别法和阿贝尔判别法等,而含参量反常积分非一致收敛判别方法的情况相对复杂一些,也不太容易被学生所理解。为此,本文从“数学分析”课程中含参量反常积分一致收敛的概念和性质出发,给出了几种判定证明方法,并结合具体实例加以分析。
The discriminant methods of uniform convergence of improper integral with parameters in the course of Math-ematical Analysis generally include Cauchy criterion,Weierstrass M discrimination,Dirichlet discrimination and Abel discrim-ination,etc.However,the discrimination of nonuniform convergence of improper integral with parameters is relatively com-plex,and it is not easy for students to understand.Combining with the concept and properties of uniform convergence of im-proper integral with parameters in the course of Mathematical Analysis,this paper presents several methods of proving the nonuniform convergence of improper integral with parameters,and analyzes with specific examples.
作者
王拥兵
WANG Yongbing(School of Mathematics and Physics,Anqing Normal University,Anqing 246133,China)
出处
《安庆师范大学学报(自然科学版)》
2022年第3期118-122,共5页
Journal of Anqing Normal University(Natural Science Edition)
基金
安徽省大规模在线开放课程项目(2020mooc273)
安徽省教学示范课程项目(20201509)。
关键词
含参量反常积分
非一致收敛
连续
improper integral with parameters
nonuniform convergence
continuous