期刊文献+

移动机器人的线性自抗扰控制设计与实验验证 被引量:4

Design and implementation of linear active disturbance rejection control for mobile robots
下载PDF
导出
摘要 为了实现移动机器人的高精度轨迹跟踪控制,设计了一种基于扩张状态观测器的扰动抑制方法和相应的实验验证平台.首先,考虑到不确定扰动如车轮纵向和侧向滑动对移动机器人系统控制性能的影响,建立了受扰下的运动学模型;然后,基于扩张后的运动学模型设计了扩张状态观测器来估计系统扰动;接着,利用扰动估计构建了线性自抗扰控制器,并利用Lyapunov函数证明了闭环系统的稳定性;同时,基于MATLAB/Simulink软件和微控制器搭建了所推荐控制算法的实验验证平台.最后,仿真和实验结果都验证了所提出控制方法的有效性. To address the high-precision trajectory tracking problem of a wheeled mobile robot(WMR), a perturbation suppression method based on an extended state observer(ESO) and the corresponding test platform are constructed. Firstly,considering unknown skidding and slipping disturbances, the kinematics model of WMR is established. Secondly, according to the extended kinematics model, the ESO is developed to estimate the disturbances. Next, a linear active disturbance rejection control(LADRC) approach is devised under the aid of disturbance estimations. The stability of the closed-loop system is also given by a Lyapunov function. Meanwhile, the experimental platform is set up by using MATLAB/Simulink software and microcontroller. Finally, the results verify the effectiveness of the proposed control method.
作者 王会明 张扬 王雪闯 WANG Hui-ming;ZHANG Yang;WANG Xue-chuang(Chongqing Key Laboratory of Complex Systems and Bionic Control,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2022年第7期1289-1296,共8页 Control Theory & Applications
基金 国家自然科学基金项目(61803059) 重庆市自然科学基金面上项目(cstc2021jcyj–msxmX0142) 仿生机器人与智能测控重庆市高校创新研究群体项目(CXQT20016) 重庆英才计划项目技术创新与应用发展类项目(109) 在渝本科高校与中国科学院所属院所合作项目(HZ2021018)资助。
关键词 移动机器人 轨迹跟踪 线性自抗扰控制 扩张状态观测器 mobile robot trajectory tracking linear active disturbance rejection control(LADRC) extended state observer(ESO)
  • 相关文献

参考文献3

二级参考文献33

  • 1BROCKETT R W. Asymptotic Stability and Feedback Stabiliza- tion [M]. Boston: Birkhauser, 1983.
  • 2BLOCH A M, REYHANOGLU M, MCCLAMROCH N H. Control and stabilization of nonholonomic dynamic systems [J]. IEEE Trans- actions on Automatic Control, 1992, 37(11): 1746 - 1757.
  • 3DE WIT C C, SORDALEN O J. Exponential stabilization of mobile robots with nonholonomic constraints [J]. IEEE Transactions on Au- tomatic Control, 1992, 37(11): 1791 - 1797.
  • 4SAMSON C. Velocity and torque feedback control of a nonholo- nomic cart [J]. Advanced Robot Control, 1991:125 - 151.
  • 5JIANG Z E Iterative design of time-varying stabilizers for multi-input systems in chained form [J]. Systems & Control Letters, 1996, 28(5): 255 - 262.
  • 6SAMSON C. Control of chained systems application to path follow- ing and time-varying point-stabilization of mobile robots [J]. IEEE Transactions on Automatic Control, 1995, 40(1): 64 - 77.
  • 7GODHAVN J M, EGELAND O. A Lyapunov approach to exponen- tial stabilization of nonholonomic systems in power form [J]. IEEE Transactions on Automatic Control, 1997, 42(7): 1028 - 1032.
  • 8M'CLOSKEY R T, MURRAY R M. Exponential stabilization of driftless nonlinear control systems using homogeneous feedback [J]. IEEE Transactions on Automatic Control, 1997, 42(5): 614 - 628.
  • 9ESCOBAR G, ORTEGA R, REYHANOGLU M. Regulation and tracking of the nonholonomic double integrator: A field-oriented con- trol approach [J]. Automatica, 1998, 34(1): 125 - 131.
  • 10DIXON W E, JIANG Z P, DAWSON D M. Global exponential set- point control of wheeled mobile robots: a Lyapunov approach [J]. Automatica, 2000, 36(11): 1741 - 1746.

共引文献47

同被引文献48

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部