期刊文献+

自适应学习中自适应测验长度预测研究

Prediction of Adaptive Testing Length in Adaptive Learning
下载PDF
导出
摘要 自适应测验是自适应评估过程中常用的一种手段,自适应测验长度预测对自适应学习的时间管理和推荐策略有非常重要的影响。对自适应测验长度预测的研究内容和现状进行分析,基于隐语义模型和认知诊断模型构建知识模块和知识点自适应测验长度预测模型,通过在大规模数据集上实验,结果表明:知识模块自适应测验长度预测模型的预测准确度较高;优化后的知识点自适应测验长度预测模型与原模型相比,预测准确度大幅提高,模型训练时间大幅减少。研究成果对自适应学习系统的实现具有重要的应用价值。 Adaptive testing is a common means in the process of adaptive evaluation. The prediction of adaptive testing length has a very important impact on time management and recommendation strategies of adaptive learning. The research content and the current situation of adaptive testing length prediction are analyzed. Then, the knowledge module adaptive testing length prediction model and the knowledge point adaptive testing length prediction model are constructed based on the latent factor model and the cognitive diagnosis model. Through experiments on large-scale data sets, the results show that the prediction accuracy of the knowledge module adaptive testing length prediction model is high;Compared with the original model, the prediction accuracy of the optimized knowledge point adaptive testing length prediction model is greatly improved and the training time of the model is greatly reduced. The research results have important application value for the realization of adaptive learning system.
作者 李建伟 武佳惠 姬艳丽 廖德生 LI Jianwei;WU Jiahui;JI Yanli;LIAO Desheng(College of Network Education,Beijing University of Posts and Telecommunications,Beijing 100088,China;Beijing Key Laboratory of Network System and Network Culture,Beijing University of Posts and Telecommunications,Beijing 100876,China)
出处 《北京邮电大学学报(社会科学版)》 2022年第4期99-108,共10页 Journal of Beijing University of Posts and Telecommunications(Social Sciences Edition)
基金 网络系统与网络文化北京市重点实验室主任基金项目(NSNC-2020A05)。
关键词 自适应学习 自适应测验 隐语义模型 认知诊断 adaptive learning adaptive testing latent factor model cognitive diagnosis
  • 相关文献

参考文献13

二级参考文献82

  • 1陈平;李珍;辛涛.认知诊断计算机化自适应测验的题库使用均匀性初探[M]《心理与行为研究》第2期。,2011.
  • 2DiBello,L. V,W. Stout. “IRT-based cognitive diagnostic models and related methods”[J].Journal of Ed-ucational Measurement,2007,(04):285291.
  • 3Chang,H. H,Z. Ying. “A-stratified multistage computerized adaptive testing”[J].Applied Psychological Measurement,1999,(03):211222.
  • 4Cheng,Y. “When cognitive diagnosis meets computerized adaptive testing:CD-CAT”[J].Psychometrika,2009,(04):619632.
  • 5Cheng,Y. “Improving cognitive diagnostic computerized adaptive testing by balancing attribute coverage:The modified maximum global discrimination index method”[J].Educational and Psychological Measurement,2010,(06):902913.
  • 6Cheng,Y,H. H. Chang. “The maximum priority index method for severely constrained item selection in computerized adaptive testing”[J].British Journal of Mathematical and Statistical Psychology,2009.369383.
  • 7Deng,H,T. Ansley,H. Chang. “Stratified and maximum information item selection procedures in com-puter adaptive testing”[J].Journal of Educational Measurement,2010,(02):202226.
  • 8Henson,R,J. Douglas. “Test construction for cognitive diagnosis”[J].Applied Psychological Measurement,2005,(04):262277.
  • 9Henson,R,L. Roussos,J. Douglas,X.He. “Cognitive diagnostic attribute-level discrimination indi-ces”[J].Applied Psychological Measurement,2008.275288.
  • 10Lima,Passos,V,M. P. F. Berger,F. E. Tan. “Test design optimization in CAT early stage with the Nominal Response Model”[J].Applied Psychological Measurement,2007.213232.

共引文献142

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部