期刊文献+

基于图WaveNet的电动汽车充电负荷预测 被引量:18

Graph WaveNet Based Charging Load Forecasting of Electric Vehicle
下载PDF
导出
摘要 为了更好地挖掘电网-交通网强耦合态势下电动汽车充电负荷的时空动态特征,提高充电负荷预测精度,提出了一种基于图WaveNet的电动汽车充电负荷预测框架。首先,将耦合的电网-交通网中的充电站看作充电负荷节点;然后,把充电站的充电负荷数据作为节点的特征信息,将各个节点构造成一张图,并把蕴含充电负荷空间维信息的图和充电负荷的时间维信息输入自适应图WaveNet框架中进行预测;最后,以中国某市城区内的充电站负荷数据为例,将基于自适应图WaveNet框架的预测结果与现有方法的预测结果进行对比,验证了所提方法的正确性和有效性。 In order to better mine the spatial-temporal dynamic characteristics of electric vehicle charging load under the situation of strong grid-transportation network coupling and improve the accuracy of charging load forecasting,a framework of graph Wave Net based charging load forecasting for electric vehicles is proposed.First,the charging stations in the coupled grid-transportation network are regarded as charging load nodes.Then,by regarding the charging load data of the charging stations as the characteristic information of the nodes,all the nodes are constructed into a graph,and the graph containing the spatial-dimension information of charging loads and the time-dimension information of charging loads are input into the adaptive graph Wave Net framework for forecasting.Finally,taking the charging station load data in an urban area of a city in China as an example,the forecasting results based on the adaptive graph Wave Net framework are compared with the forecasting results of the existing methods,and the correctness and effectiveness of the proposed method are verified.
作者 胡博 张鹏飞 黄恩泽 刘璟璐 徐健 邢作霞 HU Bo;ZHANG Pengfei;HUANG Enze;LIU Jinglu;XU Jian;XING Zuoxia(School of Electrical Engineering,Shenyang University of Technology,Shenyang 110870,China;State Grid Liaoning Electric Power Co.,Ltd.,Shenyang 110004,China;State Grid Huludao Power Supply Company,Huludao 125000,China)
出处 《电力系统自动化》 EI CSCD 北大核心 2022年第16期207-213,共7页 Automation of Electric Power Systems
基金 辽宁省“兴辽英才计划”基金资助项目(XLYC1902090)。
关键词 电动汽车 充电负荷预测 图神经网络 图WaveNet 时间卷积网络 时空特征挖掘 electric vehicle charging load forecasting graph neural network graph WaveNet temporal convolutional network spatial-temporal characteristic mining
  • 相关文献

参考文献14

二级参考文献266

共引文献818

同被引文献300

引证文献18

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部