期刊文献+

基于Look-alike和K-means算法的音乐冷启动问题研究

下载PDF
导出
摘要 在音乐推荐领域,根据用户的行为习惯进行偏好建模并进行推荐。但是对于热度较低的音乐,由于很少有用户进行消费,几乎得不到推荐,导致系统中的马太效应越发明显,不利于音乐平台的长期发展。基于look-alike框架针对冷门音乐分别进行建模,训练周期较长,且由于样本数量少,模型效果不理想。利用K-means算法对冷门歌曲进行聚类,再投入look-alike框架进行训练,训练周期大幅度缩短,且推荐准确率更高。
作者 王屯屯
出处 《电脑知识与技术》 2022年第23期1-2,7,共3页 Computer Knowledge and Technology
基金 贵州省教育厅青年科技人才成长项目(黔教合KY字[2022]100号) 黔南民族师范学院校级重点项目(2020qnsyzd03)。
  • 相关文献

参考文献3

二级参考文献38

  • 1Chen J, Geyer W, Dugan C, Muller M, Guy I. Make new friends, but keep the old: Recommending people on social networking sites//Proceedings of the 27th International Conference on Human Factors in Computing Systems. New York, NY, USA, 2009 201-210.
  • 2Sarwar B M, Karypis G, Konstan J A, Riedl John. Analysis of recommendation algorithms for e-commerce//Proceedings of the 2nd ACM Conference on Electronic Commerce (EC-00). Minneapolis, MN, USA, 2000:158 167.
  • 3Linden Greg, Smith Brent, York Jeremy, Amazon. com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 2003, 7(1): 76-80.
  • 4Pazzani M J, Billsus D. Content based recommendation systems//Brusilovsky P et al eds. The Adaptive Web. Springer Verlag, 2007:325 341.
  • 5Mislove Alan, Marcon Massimiliano, Gummadi Krishna P, Druschel Peter, Bhattacharjee Bobby. Measurement and analysis of online social networks//Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement. San Diego, CA, USA, 2007:29 /i2.
  • 6Piao Scott, Whittle Jon. A feasibility study on extracting twitter users' interests using NLP tools for serendipitous connections//Proceedings of the 3rd IEEE International Conference on Social Computing (SocialCom 2011). Boston, MA, 2011= 910 915.
  • 7Sakaguchi T, Akaho Y, Takagi T, Shintani T. Recommen dations in twitter using conceptual {uzzy sets//Proceedings of the 2010 Annual Meeting of the North American Fuzzy lnfor mation Processing Society (NAFIPS). Toronto, Canada, 2010:1 6.
  • 8Granovetter M. The strength of weak ties. American Journal of Sociology, 1973, 78(6).- 1360 1380.
  • 9Harmon John, Bennett Mike, Smyth Barry. Recommending twitter users to follow using content and collaborative filte ring approaches//Proceedings of the 4th ACM Conference on Recommender Systems ( RecSys ' 10 ). Barcelona, Spain, 2010, 199 206.
  • 10Kim Younghoon, Shim Kyuseok. TWITOB| A recommen dation system for twitter using probabilistic modeling//Pro ceedings of the 2011 IEEE llth International Conference on Data Mining(ICDM). Vancouver, Canada, 2011 340 349.

共引文献148

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部