期刊文献+

基于LSTM-CNN模型的RNA碱基不成对概率预测研究

Research on the Prediction of RNA Base Mispairing Probability Based on LSTMCNN Model
下载PDF
导出
摘要 预测核糖核酸(Ribonucleic Acid,RNA)结构是生物信息领域的热门问题。笔者提出一种长短期记忆(Long Short-Term Memory,LSTM)和卷积神经网络(Convolutional Neural Networks,CNN)相结合的LSTM-CNN深度神经网络模型。该模型基于RNA的一级序列和由LinearFold算法算出的能量最低的二级结构来预测RNA中碱基的不成对概率。最后,使用RNA数据集进行实验。实验结果表明,相对于LSTM模型和CNN模型,LSTM-CNN混合模型有较好的预测效果。 Predicting the Structure of Ribonucleic Acid(RNA) is a hot topic in the field of bioinformatics.In this paper,a deep Neural network model of LSTM-CNN is proposed,which combines Long Short-Term Memory(LSTM) and Convolutional Neural Networks(CNN).The model predicts the probability of base mispairing in the RNA secondary structure based on the primary sequence of RNA and the lowest energy secondary structure calculated by the LinearFold algorithm.Finally,RNA data sets are used for experiments.The experimental results show that LSTM-CNN has a better prediction effect.
作者 丁诗倚 DING Shiyi(Jilin University,Changchun Jilin 130015,China)
机构地区 吉林大学
出处 《信息与电脑》 2022年第10期41-43,共3页 Information & Computer
基金 2021吉林大学“大学生创新创业训练计划”省级项目(项目编号:S202110183392)。
关键词 LSTM CNN RNA结构 RNN LSTM CNN RNA structure RNN
  • 相关文献

参考文献3

二级参考文献32

  • 1付微,黄竞伟,徐丽.RNA二级结构表示方法及其转换算法[J].计算机工程与应用,2004,40(14):43-45. 被引量:3
  • 2Sakakibara Y,Brown M,Hughey R,et al.Stochastic context-free grammars for tRNA modeling[J].Nucleic Acids Research,1994,22(23):5112-5120.
  • 3Eddy S R,Durbin R.RNA sequence analysis using covariance models[J].Nucleic Acids Research,1994,22(11):2079-2088.
  • 4Dowell R D,Eddy S R.Evaluation of several lightweight stochastic context-free grammars for RNA secondary structure prediction[J].BMC Bioinformatics,2004,5:71.
  • 5Steeg E W.Neural Network Algorithms for RNA Secondary Structure Prediction[D].Toronto:University of Toronto,1989.
  • 6Hu Y J.GPRM:A genetic programming approach to finding common RNA secondary structure elements[J].Nucleic Acids Research,2003,31(13):3446-3449.
  • 7Rumelhart D,Meclelland J.Parallel Distributed Processing:Explorations in the Microstructure of Cognition[M].Cambridge,USA:Bradford Books,MIT Press,1986.
  • 8Rost B,Sander C.Prediction of protein secondary structure at better than 70% accuracy[J].J Mol Biol,1993(232):584-599.
  • 9Baldi P,Brounak S.Bioinformatics:The Machine Learning Approach[M].Cambridge,USA:MIT Press,2001.
  • 10Nussinov R,Pieczenik G,Griggs J R,et al.Algorithms for loop matchings[J].SIAM J Appl Math,1978,35(1):68-82.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部