期刊文献+

基于CNN的高精度手写体数字识别 被引量:2

High Accurate Handwritten Number Recognition Based on CNN Network
下载PDF
导出
摘要 近年来,人工智能和机器学习已成为国内外学者重要研究的领域。基于此,笔者探讨基于卷积神经网络(Convolutional Neural Networks,CNN)的高精度手写体数字识别,并将卷积内核大小、滤波器的数量、池化层的种类以及优化器的类型作为变量,通过改变这些变量做对比实验,检测模型训练和测试的准确率。实验结果表明,当卷积内核设置为3×3,三层卷积层滤波器的数量分别为32、64、128,使用最大池化层,选择Adam作为模型优化器的情况下,网络能够达到100%的训练准确率和99.55%的测试准确率,实现了高精度的手写体数字识别。 In recent years,artificial intelligence and machine learning have become important areas of concern for scholars at home and abroad.Based on this,the author discusses the high-precision handwritten digit recognition based on Convolutional Neural Networks(CNN),and takes the convolution kernel size,the number of filters,the type of pooling layer and the type of optimizer as variables.By changing these variables to do comparative experiments,the accuracy of model training and testing is tested.The experimental results indicate that the convolutional neural network model proposed in this paper can achieve 100% training accuracy and 99.55% validation accuracy under the condition that the convolution kernel is set as 3×3,the number of three-layer convolutional layer filters is 32,64 and 128 respectively,the max pooling layer is used and also Adam is selected as the model optimizer.
作者 李凯鹏 刘刚 李帅 万仁兵 LI Kaipeng;LIU Gang;LI Shuai;WAN Renbing(Jiangxi Normal University,Nanchang Jiangxi 330022,China)
机构地区 江西师范大学
出处 《信息与电脑》 2022年第10期67-70,75,共5页 Information & Computer
关键词 机器视觉 CNN 手写体数字识别 测试准确率 machine vision CNN handwritten number recognition validation accuracy
  • 相关文献

参考文献3

二级参考文献77

  • 1Lam L,Lee S,Suen C Y.Thinning methodologies A comprehensive survey[J].IEEE Trans Pattern Anal Machine Intel.1992,14(9):869-885.
  • 2Duda R O,Hart P E,Stork D G.Pattern Classification (Second Edition)[M].New York:John Wiley & Sons,2001.
  • 3Duda R O,Hart P E.Pattern Classification and Scene Analysis[M].New York:John Wiley & Sons,1973.
  • 4Richard O Duda,Peter E Hart,David G Stork.Pattern Classification (2nd Edition) (Hardcover)[M].New York:John Wiley & Sons,2001.
  • 5Andrew R Webb.Statistical Pattern Recognition,2nd Edition (Paperback)[M].New York:John Wiley & Sons,2002.
  • 6张学工.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 7LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
  • 8HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [J]. Neural Computation, 2006, 18(7): 1527-1554.
  • 9LEE H, GROSSE R, RANGANATH R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations [C]// ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM, 2009: 609-616.
  • 10HUANG G B, LEE H, ERIK G. Learning hierarchical representations for face verification with convolutional deep belief networks [C]// CVPR '12: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2012: 2518-2525.

共引文献575

同被引文献26

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部