期刊文献+

机械理论的混凝土路面滚动阻力预测模型研究 被引量:1

Research on Prediction Model of Rolling Resistance of Concrete Pavement Based on Mechanical Theory
下载PDF
导出
摘要 车轮的滚动阻力是决定汽车燃油经济性的主要因素之一。而由滚动阻力引起的能量损失量是一个变量,该变量大小取决于车辆和路面。因而,路面自身的表面特性以及车辆自身固有属性(如轴距、载重量等)都会影响滚动阻力。由于刚性路面相对于柔性路面更为复杂,国内外鲜有针对刚性路面的滚动阻力预测研究。为弥补该方面空缺,本文通过对不同条件下的刚性路面的能量耗散进行机械模拟分析,然后利用分析结果,考虑路面截面的力学性能和加载条件建立滚动阻力预测函数,并将该预测函数用于模拟实际路面。研究结果显示该预测模型可准确计算车辆的滚动阻力。 The rolling resistance of wheels is one of the main factors that determine the fuel economy of automobiles.The energy loss caused by rolling resistance is a variable,which depends on the vehicle and road surface.Therefore,the surface characteris⁃tics of the road surface and the inherent properties of the vehicle(such as wheelbase,load capacity,etc.)will affect the rolling re⁃sistance.Because rigid pavement is more complicated than flexible pavement,there is little research on rolling resistance predic⁃tion for rigid pavement at home and abroad.In order to make up for this vacancy,it carries out mechanical simulation analysis on the energy dissipation of rigid pavement under different conditions,and then uses the analysis results to establish a rolling re⁃sistance prediction function considering the mechanical properties of pavement sections and loading conditions,and uses the pre⁃diction function to simulate actual pavement.The results show that the prediction model can accurately calculate the impact of rolling resistance on fuel consumption.
作者 王婷 王刚 赵雪峰 WANG Ting;WANG Gang;ZHAO Xue-feng(Chengdu Vocational and Technical College,Sichuan Chengdu 610041,China;Key Laboratory of Sichuan Province Colleges and Universities for Comprehensive Development and Utilization of Industrial Solid Waste Civil Engineering,Si-chuan Panzhihua 617000,China;Panzhihua College,Sichuan Panzhihua 617000,China;Sichuan University,Sich-uan Chengdu 610065,China)
出处 《机械设计与制造》 北大核心 2022年第9期61-65,70,共6页 Machinery Design & Manufacture
基金 四川省高校重点实验室2019年度开发基金项目(SC_FQWLY-2019-Y-05) 高教研究所支持项目(GJ2017-09)。
关键词 机械理论 滚动阻力 预测模型 Mechanical Theory Rolling Resistance Forecast Model
  • 相关文献

参考文献10

二级参考文献34

共引文献51

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部