期刊文献+

Bin-Picking中无纹理工件的分割

Segmentation of Texture-Less Object for Bin-Picking
下载PDF
导出
摘要 为了解决Bin-Picking系统中无纹理工件的分割问题,提出了一种将颜色域和深度域信息融合的分割方法。该方法首先提取颜色域和深度域的边缘特征,然后基于二者的边缘特征,分别通过形态学预处理获取标记图,利用标记图辅助分水岭分割。融合二者的分割信息获得初分割结果,最后通过区域生长法以颜色域分割结果为边界优化分割区域。实验结果表明该算法适用于Bin-Picking视觉检测环节中无纹理目标的分割,对于复杂场景可获得较好的目标潜在位置区域,具有较高的鲁棒性和实时性。 In order to solve the problem of segmentation for texture-less object in Bin-picking system,a novel segmentation algo⁃rithm based on a mixture of the segmentations on the RGB image and depth map is proposed in the paper.Firstly,The algorithm extracts the edges of RGB image and depth map.Then,with the assistance of these two types of edges,the segmentations of the RGB image and the depth image are obtained respectively by the morphological reconstruction watershed approach.Further⁃more,fusing the RGB image and depth map as integrated segmentation.Finally,the integrated segmentation is refined by seed⁃ed region growth in which the RGB segmentation information is treated as growth boundary.The experimental results show that the method have robustness and the real ability for the Bin-picking visual detection,and it can get better potential location re⁃gions for the complicated situations.
作者 刘瑶 赵慧 伍世虔 陈彬 LIU Yao;ZHAO Hui;WU Shi-qian;CHEN Bin(School of Machinery and Automation,Wuhan University of Science and Technology,Hubei Wuhan 430081,China;Institute of Robotic and Intelligent System,Wuhan University of Science and Technology,Hubei Wuhan,430081,Chi-na;Shool of Information Science and Engineering,Wuhan University of Science and Technology,Hubei Wuhan 430081,China)
出处 《机械设计与制造》 北大核心 2022年第9期278-281,287,共5页 Machinery Design & Manufacture
基金 国家自然科学基金面上项目(61775172)。
关键词 Bin-Picking 无纹理工件 机器视觉 分水岭 目标分割 Bin-Picking Texture-Less Object Machine Vision Watershed Algorithm Object Segmentation
  • 相关文献

参考文献5

二级参考文献56

  • 1李长勇,曹其新.基于深度图像的蔬果形状特征提取[J].农业机械学报,2012,43(S1):242-245. 被引量:9
  • 2杜永忠,平雪良,何佳唯.圣女果表面缺陷检测与分级系统研究[J].农业机械学报,2013,44(S1):194-199. 被引量:22
  • 3乔体洲,戴树岭.基于Kinect的人手姿态混合跟踪方法[J].计算机辅助设计与图形学学报,2015,27(4):713-720. 被引量:4
  • 4高丽,杨树元,夏杰,王诗俊,梁军利,李海强.基于标记的Watershed图像分割新算法[J].电子学报,2006,34(11):2018-2023. 被引量:34
  • 5高丽,杨树元,李海强.一种基于标记的分水岭图像分割新算法[J].中国图象图形学报,2007,12(6):1025-1032. 被引量:110
  • 6Beucher S,Meyer F.The morphological approach to segmentation: The watershed transformation [M]. DOUGHERTY E R. Mathematical Morphology in Image Processing. New York: Marcel Dekker, 1993.433-481.
  • 7Philippe Salembier.Morphological Multi-scale Segmentation for Image Coding.ignal Processing, 1994, 38-359-386.
  • 8Chanda B, K.Kundu M, Vani Padmaha Y.A Multi-scale Morphologic Edge Detector. Pattern Recognition, 1998, 31(10): 1469-1478.
  • 9Vincent L,Soille P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(7): 583-598.[DOI: 10.1.1.89.5268].
  • 10Martin D R, Fowlkes CC, Malik J. Learning to detect natural image boundaries using local brightness, color, and texture cues[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 27(5): 530-549.[DOI: 10. 1109/TPAMI.2004.1273918].

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部