期刊文献+

雪深和雪水当量被动微波反演及应用进展 被引量:2

Inversion of snow depth and snow water equivalent based on passive microwave remote sensing and its application progress
下载PDF
导出
摘要 雪深和雪水当量是积雪观测最主要且关键的要素,在冰冻圈、全球气候变化、水资源调查等领域具有重要意义。微波遥感相较于可见光和近红外遥感对积雪观测具有优势,为此,对被动微波遥感反演雪深和雪水当量的研究进展进行了系统的总结。梳理了野外现场实地测量、地面台站长期观测和卫星遥感区域观测等3种积雪观测方式及其主要观测积雪参数;重点总结并评价了半经验、物理模型和机器学习等3种雪深和雪水当量反演算法。展示了青藏高原被动微波积雪监测的研究成果,展望了对未来积雪参数遥感反演的发展趋势,为雪深和雪水当量被动微波反演的深入开展提供了科学的参考建议。 Snow depth and snow water equivalent are critical elements for snow cover observation and are greatly significant in fields such as cryosphere,global climate change,and water resource surveys.Microwave remote sensing is superior to both visible-light and near-infrared remote sensing in snow cover observation.This study systematically summarized the research results of the passive microwave remote sensing in the inversion of snow depth and snow water equivalent.It organized three types of snow cover observation methods,i.e.,field surveys,long-term observations at ground stations,and regional observations based on satellite remote sensing,as well as major snow cover parameters to be observed.Furthermore,it summarized and evaluated three inversion algorithms,i.e.,semi-empirical method,physical model,and machine learning.Finally,this study presented the results of the snow cover in the Qinghai-Tibet Plateau observed using passive microwave remote sensing,predicted the future development trend of remote sensing-based inversion of snow cover parameters,and put forward scientific suggestions for the in-depth implementation of the inversion of snow depth and snow water equivalent passive microwave remote sensing.
作者 王泽坤 甘甫平 闫柏琨 李贤庆 李和谋 WANG Zekun;GAN Fuping;YAN Bokun;LI Xianqing;LI Hemou(State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology(Beijing),Beijing 100083,China;College of Geoscience and Surveying Engineering,China University of Mining and Technology(Beijing),Beijing 100083,China;China Aero Geophysical Survey and Remote Sensing Center for Natural Resources,Beijing 100083,China)
出处 《自然资源遥感》 CSCD 北大核心 2022年第3期1-9,共9页 Remote Sensing for Natural Resources
基金 中国地质调查局地质调查项目“典型流域水循环要素与自然资源遥感定量调查”(编号:DD20221642-3)资助。
关键词 雪深和雪水当量 被动微波 反演算法 积雪观测 青藏高原 snow depth and snow water equivalent passive microwave inversion algorithm snow cover observation Qinghai-Tibet Plateau
  • 相关文献

参考文献23

二级参考文献471

共引文献579

同被引文献46

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部