期刊文献+

Calcification of planktonic foraminifer Neogloboquadrina pachyderma(sinistral) controlled by seawater temperature rather than ocean acidification in the Antarctic Zone of modern Sothern Ocean

原文传递
导出
摘要 Neogloboquadrina pachyderma(sinistral), the dominant planktonic foraminiferal species in the mid-to-high latitude oceans, represents a major component of local calcium carbonate(CaCO) production. However, the predominant factors,governing the calcification of this species and its potential response to the future marine environmental changes, are poorly understood. The present study utilized an improved cleaning method for the size-normalized weight(SNW) measurement to estimate the SNW of N. pachyderma(sin.) in surface sediments from the Amundsen Sea, the Ross Sea, and the Prydz Bay in the Antarctic Zone of the Southern Ocean. It was found that SNW of N. pachyderma(sin.) is not controlled by deep-water carbonate dissolution post-mortem, and can be therefore, used to reflect the degree of calcification. The comparison between N. pachyderma(sin.) SNW and environmental parameters(temperature, salinity, nutrient concentration, and carbonate system) in the calcification depth revealed that N. pachyderma(sin.) SNWs in the size ranges of 200–250, 250–300, and 300–355 μm are significantly and positively correlated with seawater temperature. Moreover, SNW would increase by ~30% per degree increase in temperature, thereby suggesting that the calcification of N. pachyderma(sin.) in the modern Antarctic Zone of the Southern Ocean is mainly controlled by temperature, rather than by other environmental parameters such as ocean acidification. Importantly, a potential increase in calcification of N. pachyderma(sin.) in the Antarctic Zone to produce CaCOwill release COinto the atmosphere. In turn, the future ocean warming will weaken the ocean carbon sink, thereby generating positive feedback for global warming.
出处 《Science China Earth Sciences》 SCIE EI CAS CSCD 2022年第9期1824-1836,共13页 中国科学(地球科学英文版)
基金 the support of Chinese Arctic and Antarctic Administration supported by the Impact and Response of Antarctic Seas to Climate Change (Grant No. IRASCC2020-2022-No.01-03-02) the Basic Scientific Fund for National Public Research Institutes of China (Grant Nos. 2019S04, 2017Y07, 2019Q09) the National Natural Science Foundation of China (Grant Nos. 42076232, 41976080, 42006075) the Taishan Scholars Project Funding (Grant No. TS20190963)。
  • 相关文献

参考文献1

二级参考文献9

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部