期刊文献+

基于深度学习的三维物体重建方法研究综述 被引量:2

A review of 3D objects reconstruction based on deep learning
下载PDF
导出
摘要 从图像、视频和点云等有限条件的输入中重建三维物体,是目前计算机视觉和计算机图形学领域重要的研究方向,是实现元宇宙的重要技术基础。在对基于深度学习三维物体重建方法的综述中,首先分析了基于多视图几何的三维物体重建方法;从三维物体的点云、体素、隐域场和网格等重建结果的角度,详细分析了基于深度学习的三维重建方法;简单讨论了深度学习和多视图几何理论相结合的三维物体重建方法。其次,对用于深度学习的三维物体重建中的损失函数、网络架构和相关数据集进行了讨论。最后,凝练了基于深度学习的三维物体重建之研究趋势。 Reconstruction of 3D objects from limited inputs such as images,videos and point clouds is currently an important research topic in the fields of computer vision and computer graphics,and an important foundation for the realization of the meta universe.In the review of 3D object reconstruction methods based on deep learning,the 3D object reconstruction methods based on multi-view geometry are analyzed first.From the perspective of the reconstruction results of point cloud,voxel,hidden field and grid of 3D objects,the 3D reconstruction method based on deep learning is analyzed in detail,and the 3D object reconstruction method based on deep learning and multi-view geometry theory is briefly discussed.Secondly,the loss function,network architecture and related data sets in 3D object reconstruction for deep learning are discussed.Finally,the research trend of3D object reconstruction based on deep learning is condensed.
作者 郁钱 路金晓 柏基权 范洪辉 YU Qian;LU Jinxiao;BAI Jiquan;FAN Honghui(School of Computer Engineering,Jiangsu University of Technology,Changzhou 213001,China;School of Mechanical Engineering,Jiangsu University of Technology,Changzhou 213001,China)
出处 《江苏理工学院学报》 2022年第4期31-41,共11页 Journal of Jiangsu University of Technology
基金 国家自然科学基金项目“基于单视图的三维形状高精准重建方法研究”(61902159) 江苏省高校自然科学基金项目“监控视频场景知识表达与推理方法研究”(20KJA520007)。
关键词 物体重建 三维重建 深度学习 object reconstruction 3D reconstruction deep learning
  • 相关文献

参考文献4

二级参考文献39

  • 1Vanegas C A, Aliaga D G, Wonka P, Miiller P, Waddell P, Watson B. Modelling the appearance and behaviour of ur- ball spaces. Computer Graphics Forum, 2010, 29(1): 25-42.
  • 2Sheppard S R J, Cizek P. The ethics of Google Earth: crossing thresholds from spatial data to landscape visualisa- tion..Journal of Environmental Management, 2009, 90(6): 2012-2117.
  • 3Simon L, Teboul O, Koutsourakis P, Van Gool L, Para- gios N. Parameter-free/Pareto-driven procedural 3D recon- struction of buildings from ground-level sequences. In: Pro- ceedings of the 2012 IEEE Conference on Computer Visionand Pattern Recognition. Rhode Island, USA: IEEE, 2012. 518-525.
  • 4Vanegas C A, Aliaga D G, Benes B. Automatic extraction of manhattan-world building masses from 3D laser range scans. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(10): 1627-1637.
  • 5Agarwal S, Furukawa Y, Snavely N, Simon I, Curless B, Seitz S M, Szeliski R. Building rome in a day. In: Proceedings of the 12th International Conference on Computer Vision. Ky- oto, Japan: IEEE, 2009. 72-79.
  • 6Miufk B, KoeckA ,L Multi-view superpixel stereo in ur- ban environments. International Journal of Computer Vi- sion, 2010, 89(1): 106-119.
  • 7Snavely N, Simon I, Goesele M, Szeliski R, Seitz S M. Scene reconstruction and visualization from community photo col- lections. Proceedings of the IEEE, 2010, 98(8): 1370-1390.
  • 8Bartoli A, Sturm P. Constrained structure and motion from multiple uncalibrated views of a piecewise planar scene. In- ternational Journal of Comp1ter Vision, 2003, 52(1): 45-64.
  • 9Zhou Z H, Jin H L, Ma Y. Robust plane-based structure from motion. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Rhode Island, USA: IEEE, 2012. 1482-1489.
  • 10Goesele M, Snavely N, Curless B, Hoppe H, Seitz S M. Multi-view stereo for community photo collections. Ill: Pro- ceedings of the 1 lth International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE, 2007. 1-8.

共引文献38

同被引文献34

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部