期刊文献+

含非线性残差的新能源汽车规模预测方法 被引量:5

New energy vehicle scale prediction method with nonlinear residuals
下载PDF
导出
摘要 掌握新能源汽车规模发展的趋势对政府调控、车企发展方向和能源部门决策都具有重要意义,据此文中提出一种含非线性残差的新能源汽车规模预测方法。首先,利用区间预测的方法对经济、政策不确定性进行研究;其次,在考虑规模预测的残差条件下,采用组合预测模型和支持向量回归(SVR)模型,分别对线性成分、非线性残差进行预测;最后,以全国新能源汽车规模为例,得到未来新能源汽车规模的区间范围。通过对比不同预测方法,验证文中方法的有效性,并分析不同政策因素对新能源汽车的规模演化影响,可为后期充电设施等相关规划提供参考。 Analyzing the development trend of the scale of new energy vehicles is of great significance to the government regulation,the development direction of vehicle enterprises and the decision-making of the energy department.A new energy vehicle scale prediction method with nonlinear residuals is proposed in this paper.Firstly,the interval prediction method is used to study the uncertainty of economic policy.Secondly,considering the residual of scale prediction,the combined prediction model and support vector regression(SVR)model are used to predict the linear component and nonlinear residual respectively.Finally,the range of new energy vehicles scale in the future is obtained by taking the scale of national new energy vehicles as an example.By comparing different prediction methods,the effectiveness of the proposed method is verified,and the impact of different policy factors on the scale evolution of new energy vehicles is analyzed.The proposed method provides a corresponding reference for later charging facilities and other related planning.
作者 董晓红 冯芷蔚 张家安 刘宁 DONG Xiaohong;FENG Zhiwei;ZHANG Jiaan;LIU Ning(School of Artificial Intelligence,Hebei University of Technology,Tianjin 300131,China;State Grid Zhangjiakou Power Supply Company of Jibei Electric Power Co.,Ltd.,Zhangjiakou 075000,China)
出处 《电力工程技术》 北大核心 2022年第5期76-84,共9页 Electric Power Engineering Technology
基金 河北省自然科学基金资助项目(E2020202131)。
关键词 新能源汽车 区间预测 组合模型 支持向量回归(SVR) 非线性残差 规模演化 new energy vehicle interval forecast combined forecasting model support vector regression(SVR) nonlinear residual scale evolution
  • 相关文献

参考文献19

二级参考文献167

共引文献229

同被引文献123

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部