期刊文献+

基于自适应CYCBD和1.5维谱的滚动轴承故障特征提取方法 被引量:1

Fault features extraction method of rolling bearings based on adaptive CYCBD and 1.5-dimensional spectrum
下载PDF
导出
摘要 在强背景噪声环境下,滚动轴承的故障特征信号难以得到分离,针对这一问题,提出了一种基于自适应最大二阶循环平稳盲卷积(CYCBD)和1.5维谱的滚动轴承故障特征提取方法。首先,对滚动轴承故障振动信号进行了傅里叶变换,得到了其信号的频谱结构,再以加权谐波和为优化指标,将信号频谱范围内的所有频率作为候选频率进行了搜索,确定加权谐波和最大处的频率为最优循环频率;然后,使用经过参数优化后的CYCBD对信号进行了滤波,并结合1.5维谱方法对滤波信号进行了处理;最后,为了进一步验证该方法在提取轴承故障特征方面的有效性,采用包络分析方法对实测信号进行了分析,获得了滤波信号的频谱特征。研究结果表明:经基于自适应CYCBD和1.5维谱方法滤波后,信号的香农熵为0.094,显著低于CYCBD和经验模态分解(EMD)方法;而且在信号的包络谱中,出现了清晰的故障特征频率及其倍频谱线,说明该方法具有较好的噪声抑制能力,并且能够有效地提取轴承振动信号中的故障脉冲成分。 Aiming at the problem of difficult to separate the fault characteristic signals of rolling bearing in a strong background noise environment,a fault feature extraction method of rolling bearing based on adaptive maximum second-order cyclostationary blind convolution(CYCBD)and 1.5-dimensional spectrum was proposed.Firstly,Fourier transform was performed on the vibration signal to obtain the spectral structure of the signal;taking the proposed weighted harmonic sum as the optimization index,all frequencies in the signal spectrum range were used as candidate frequencies to search,and the frequency at the maximum weighted harmonic sum was determined as optimal cycle frequency.Then,the CYCBD with optimized parameters was used to filter the signal,and the 1.5-dimensional spectrum method was used to process the filtered signal.Finally,in order to further verify the effectiveness of the method in extracting bearing fault characteristics,the measured signal was analyzed by envelope analysis method,and the spectral characteristics of the filtered signal were obtained.The experimental results show that after filtering by the method,the Shannon entropy of the signal is 0.094,significantly lower than CYCBD and the EMD method.In addition,clear fault characteristic frequency and multiplier appear in the envelope spectrum of the signal,which indicate that the method has good noise suppression ability and can effectively extract fault pulse components from bearing vibration signals.
作者 朱战伟 何怡刚 宁暑光 王涛 ZHU Zhan-wei;HE Yi-gang;NING Shu-guang;WANG Tao(College of Electrical and Automatic Engineering,Hefei University of Technology,Hefei 230009,China)
出处 《机电工程》 CAS 北大核心 2022年第9期1185-1193,共9页 Journal of Mechanical & Electrical Engineering
基金 国家自然科学基金资助项目(51977153,51977161,51577046) 国家自然科学基金重点项目(51637004) 国家重点研发计划资助项目(2016YFF0102200) 装备预先研究重点项目(41402040301)。
关键词 最大二阶循环平稳盲卷积 谐波加权和 循环频率 包络分析方法 频谱特征 经验模态分解 信号滤波 maximum second-order cyclostationary blind convolution(CYCBD) harmonic weighted sum cyclic frequency envelope analysis method spectral characteristics empirical mode decomposition(EMD) signal filtering
  • 相关文献

参考文献8

二级参考文献64

  • 1何清波,孔凡让,朱忠奎,龙潜,刘维来.盲卷积分离及其在机械振动信号消噪中的应用研究[J].振动与冲击,2006,25(2):30-34. 被引量:7
  • 2黄之初,张家凡.滚动轴承故障脉冲信号提取及诊断∶一种盲解卷积方法[J].振动与冲击,2006,25(3):150-154. 被引量:12
  • 3任朝晖,马辉,王德明,宋乃慧.小波分析在转子裂纹故障中的应用[J].东北大学学报(自然科学版),2007,28(4):545-548. 被引量:6
  • 4Jutten C, Herault J. Blind separation of sources, Part II:Problems statement [J].Signal Processing, 1991, 24(1): 11-20.
  • 5Jutten C, Herault J. Blind separation of sources, Part III:Stability analysis [J]. Signal Processing, 1991,24 (1) .. 21-30.
  • 6Thi H L N, Jutten C. Blind source separation for convolutive mixtures [J]. Signal Processing, 1995,45 (2) : 209-229.
  • 7Charkani N, Deville Y. Self-adaptive separation of convolutively mixed signals with a recursive structure, Part I: Stability analysis and optimization of asymptotic behaviour [J].Signal Processing, 1999, 73(3): 225-254.
  • 8Gelle G, Colas M, Delaunay G. Blind sources separation applied to rotating machines monitoring by acoustical and vibrations analysis [J]. Mechanical Systems and Signal Processing, 2000, 14(3):427-442.
  • 9Jutten C, Herault J. Blind separation of sources, Part I :An adaptive algorithm based on neuromimetic architecture [J]. Signal Processing, 1991, 24 (1):1-10.
  • 10苏文胜,王奉涛,张志新,郭正刚,李宏坤.EMD降噪和谱峭度法在滚动轴承早期故障诊断中的应用[J].振动与冲击,2010,29(3):18-21. 被引量:251

共引文献125

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部