期刊文献+

基于时间序列的微博谣言检测 被引量:2

Microblog Rumors Detection Based on Time Series
下载PDF
导出
摘要 微博的低门槛造就了谣言产生的低成本,致使微博成为谣言信息的温床。因此,快速有效地检测谣言对微博至关重要。论文提出基于时间序列的微博谣言检测方法。为了提高谣言事件检测的性能,针对时间序列划分方法进行研究,提出基于聚类的微博事件划分方法,根据微博在时间上的聚合程度构建时间序列。同时基于GRU网络构建事件分类模型,自动学习特征用于谣言检测。实验结果表明,检测准确率达到96.7%,验证了该方法在谣言检测问题上的有效性。 The low threshold of Microblog creates the low cost of rumor generation,which makes Microblog become the hotbed of rumor information. Therefore,the rapid and effective rumors detection is crucial to Weibo. This paper proposes a time series based rumor detection method for Microblog. In order to improve the performance of rumor event detection,this paper studies the time series division method,proposes a clustering based microblog event division method,and constructs a time series according to the degree of microblog aggregation in time. Meanwhile,event classification model is built based on GRU network,and automatic learning features are used for rumor detection. Experimental results show that the detection accuracy reaches 96.7%,which verifies the effectiveness of this method in rumor detection.
作者 韩连金 潘伟民 张海军 HAN Lianjin;PAN Weimin;ZHANG Haijun(School of Computer Science and Technology,Xinjiang Normal University,Urumqi 830054)
出处 《计算机与数字工程》 2022年第8期1751-1754,1765,共5页 Computer & Digital Engineering
基金 国家自然科学基金—新疆联合基金项目“网络谣言检测与舆论引导算法研究”(编号:U1703261) 新疆师范大学硕士研究生科研创新基金项目“基于时间序列的微博谣言检测方法”(编号:XSY202002005)资助。
关键词 谣言检测 时间序列 聚类 GRU rumor detection time series clustering GRU
  • 相关文献

参考文献8

二级参考文献79

  • 1刘涵,刘丁,李琦.基于支持向量机的混沌时间序列非线性预测[J].系统工程理论与实践,2005,25(9):94-99. 被引量:46
  • 2段江娇,薛永生,林子雨,汪卫,施伯乐.一种新的基于隐Markov模型的分层时间序列聚类算法[J].计算机研究与发展,2006,43(1):61-67. 被引量:10
  • 3KEOGH E,KASETTY S.On the need for time series data mining benchmarks:a survey and empirical demonstration[C]//Proc of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM Press,2002:102-111.
  • 4HETLAND M L.A survey of recent methods for efficient retrieval of similar time sequences[EB/OL].(2001).http://citeseer.nj.nec.com/hetland01survey.html.
  • 5HOPPNER K.Time series abstraction methods:a survey[C]//Proc of GI Jahrestagung Informatik,Workshop on Knowledge Discovery in Databases.Dortmund:[s.n.],2002:777-786.
  • 6LAXMAN S,SASTRY P S.A survey of temporal data mining[J].Sādhanā Academy Proceedings in Engineering Sciences,2006,31(2):173-198.
  • 7AGRAWALR,FALOUTSOS C,SWAMI A.Efficient similarity search in sequence databases[C]//Proc of the 4th International Conference on Foundations of Data Organization and Algorithms.London:Springer-Verlag,1993:69-84.
  • 8FALOUTSOS C,RANGANATHAN M,MANOLOPOULOS Y.Fast subsequence matching in time-series databases[C]//Proc of the ACM SIGMOD International Conference on Management of Data.Mineapolis:ACM Press,1994:419-429.
  • 9RAFIEI D,MENDELZON A O.Querying time series data based on similarity[J].IEEE Trans on Knowledge and Data Engineering,2000,12(5):675-693.
  • 10WANG Chang-zhou,WANG Xiao-yang.Multilevel filtering for high dimensional nearest neighbor search[C]//Proc of ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery.Dallas:ACM Press,2000:37-43.

共引文献143

同被引文献16

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部