期刊文献+

基于项目特征与用户兴趣模糊性的推荐算法 被引量:2

The Recommendation Algorithm Based on the Fuzziness of Project Features and User Interest
下载PDF
导出
摘要 为解决项目评分矩阵稀疏性问题,提出结合项目特征和用户评分的模糊性特性。首先利用类高斯模糊数描述项目所属类别的隶属度,然后应用梯形模糊数表示用户对项目的喜爱程度构建用户—项目类别偏好矩阵,最后构建基于项目特征的模糊性和用户兴趣的方法计算推荐信任分。在MovieLens 100k数据集上的实验结果表明,当N取1-300时,在不损失top-N推荐召回率的情况下,该算法相较于基于用户和基于项目的协同过滤推荐算法,平均推荐准确率分别提高了39.97%和5.74%,有效解决了数据稀疏性问题,可在历史行为数据较少的情况下,推荐用户感兴趣的项目。 In order to solve the problem of sparse item scoring matrix,a fuzzy feature combining item features and user ratings is proposed.First,Gaussian like fuzzy numbers are used to describe the membership degree of the category to which the project belongs,then trapezoidal fuzzy numbers are used to represent the user′s preference for the project,and a user project category preference matrix is constructed. Finally,a method based on the fuzziness of project characteristics and user interest is constructed to calculate the recommendation score. The experimental results on movielens 100k dataset show that when n is 1~300,the average recommendation accuracy of this algorithm is improved by39.97% and 5.74% respectively compared with the user based and item based collaborative filtering recommendation algorithms without losing the top-N recommendation recall rate. It effectively solves the problem of data sparsity,and can recommend items of interest to users in the case of less historical behavior data.
作者 黄向春 赵芬霞 安建业 HUANG Xiang-chun;ZHAO Fen-xia;AN Jian-ye(School of Science,Tianjin University of Commerce,Tianjin 300134,China)
出处 《软件导刊》 2022年第9期14-18,共5页 Software Guide
基金 国家社会科学基金青年项目(20CTJ011)。
关键词 协同过滤推荐算法 模糊数 用户兴趣模型 推荐信任分 用户偏好矩阵 collaborative filtering recommendation algorithm fuzzy numbers user interest model recommendation trust score user preference matrix
  • 相关文献

参考文献9

二级参考文献75

  • 1李英壮,高拓,李先毅.基于云计算的视频推荐系统的设计[J].通信学报,2013,34(S2):138-140. 被引量:8
  • 2丁欣,马严,吴军.适用于校园网的视频推荐系统的设计与实现[J].通信学报,2013,34(S2):175-179. 被引量:4
  • 3周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:103
  • 4王惠敏,聂规划.融合用户和项目相关信息的协同过滤算法研究[J].武汉理工大学学报,2007,29(7):160-163. 被引量:5
  • 5张光卫,李德毅,李鹏,康建初,陈桂生.基于云模型的协同过滤推荐算法[J].软件学报,2007,18(10):2403-2411. 被引量:193
  • 6MASSA P, AVESANI P. Trust-aware collaborative filtering for recom- mender systems[ C ]//Proc of International Conference on Cooperative Information Systems. 2004:492-508.
  • 7HUETE J F, FEM. NDEZ-LUNA J M, De CAMPOS L M, et al. Using past-prediction accuracy in recommender systems [ J ]. Information Sciences:an International Journal,2012,199(9) :78-92.
  • 8SARWAR B M, KARYPIS G, KONSTAN J A, et al. Application of di- mensionality reduction in recommender system: a case study[ C]// Proc of ACM WebKDD 2000 Workshop. New York : ACM Press ,2000 : 264 - 268.
  • 9Zheng S, Wang W H,Ford J,et al. Learning from incompleteratings using non-negative matrix factorization [C] // Ghosh J,ed. Proc. of the 6 th SIAM Conf. on Data Mining. Bethesda : SI-AM, 2006:549-553.
  • 10Anand D,Bharadwaj K K. Utilizing various sparsity measuresfor enhancing accuracy of collaborative recommender systemsbased on local and global similarities [J]. Expert Systems withApplications,2011,38(5): 5101-5109.

共引文献109

同被引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部