期刊文献+

可热塑加工的纤维素材料研究进展 被引量:2

Research Progress on Thermoplastic Cellulose Materials
原文传递
导出
摘要 天然高分子纤维素由于具有强氢键网络,不能熔融,难于加工.在苛刻加工条件或加入大量增塑剂的情况下,才可实现纤维素的热塑加工,但是所得材料存在诸多缺陷.为此,通过化学修饰引入新的衍生化基团的内增塑方法受到了人们的广泛关注,但是内增塑方法会导致纤维素材料降解性能显著下降.如何制备兼具热塑性和降解性的纤维素材料仍然是纤维素领域的挑战.本文回顾了纤维素材料热塑加工领域的相关进展,分析对比了纤维素热塑加工的各种策略,希望促进构建兼具热塑性和降解性的材料,解决热封涂层、热封薄膜等轻薄材料对环境的危害,对于促进环境保护和可持续发展具有重要意义. Natural cellulose cannot be melted and is difficult to process due to its strong hydrogen bonding network.Thermoplastic processing of cellulose is achieved only under harsh processing conditions or with the addition of large amounts of plasticizers,but the resulting material suffers from numerous drawbacks.So the internal plasticization method of introducing new derivatized groups has received extensive attention,but the internal plasticization method will lead to a significant decrease in the degradation performance of cellulose materials.How to prepare cellulosic materials with both thermoplasticity and degradability remains a challenge.This paper summarizes the relevant progress in the field of thermoplastic processing of cellulose materials,promoting the construction of materials with both thermoplasticity and degradability to solve the environmental hazards of thin and light materials such as heat-sealing coatings and films.
作者 尹春春 许如梦 张金明 宋广杰 张军 Chun-chun Yin;Ru-meng Xu;Jin-ming Zhang;Guang-jie Song;Jun Zhang(CAS Key Laboratory of Engineering Plastics,Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190;School of Chemical Science,University of Chinese Academy of Sciences,Beijing 100049)
出处 《高分子学报》 SCIE CAS CSCD 北大核心 2022年第9期1072-1082,共11页 Acta Polymerica Sinica
基金 国家自然科学基金(基金号52173292,U2004211)资助项目。
关键词 纤维素 热塑加工 纤维素衍生物 增塑剂 衍生化 Cellulose Thermoplastic processing Cellulose derivatives Plasticizer Derivatization
  • 相关文献

参考文献1

二级参考文献11

  • 1武进,张昊,张军,何嘉松.纤维素在离子液体中的均相乙酰化及其选择性[J].高等学校化学学报,2006,27(3):592-594. 被引量:17
  • 2Edgar K. J. , Buchanan C. M. , Debenham J. S. , Rundquist P. A. , Seiler B. D. , Shehon M. C. , Tindall D.. Progress in Polymer Science[J], 2011,26(9): 1605-1688.
  • 3Vid6ki B., K16bert S., Puk6nszky B.. Journal of Polymer Science Part B: Polymer Physics[J], 2007, 45 (8) : 873-883.
  • 4Szamel G., Domjan A., Klebert S., Pukanszky B.. European Polymer Journal[J], 2008, 44(2) : 357-365.
  • 5Mayumi A. , Kitaoka T. , Wariishi H.. Journal of Applied Polymer Science [ J ], 2006, 102 (5) : 4358-4364.
  • 6Yan C. H. , Zhang J. M. , Lv Y. X. , Yu J. , Wu J. , Zhang J. , He J. S.. Biomacromolecules[ J] , 2009, 10:2013-2018.
  • 7Teramoto Y. , Nishio Y.. Polymer[J], 2003, 44:2701-2709.
  • 8Teramoto Y., Nishio Y.. Biomacromolecules[J] , 2004, 5:397-406.
  • 9Wu J. , Zhang J. , Zhang H. , He J. S. , Ren Q. , Guo M.. Biomacromolecules[J] , 2004, 5:266-268.
  • 10Zhang H. , Wu J. , Zhang J. , He J. S.. Macromolecules[J], 2005, 38:8272-8277.

共引文献2

同被引文献8

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部