摘要
为了提升电力调度文本在业务场景的应用效果,提出基于混合神经网络的电力调度文本事件抽取方法。以电力调度文本故障处置预案为研究对象,建立以预案触发词为中心的事件抽取模型。通过仿真案例验证了所提方法具有较好的事件抽取效果,能够提升实体和实体关系识别的准确率。
In order to improve the application effect of power dispatching text in business scenarios, a method for extracting power dispatching text events is proposed based on hybrid neural network. Taking the power dispatching text fault handling plan as the research object, an event extraction model is established centering on the trigger words of the plan. It is proved through case simulation that the proposed method can better extract the entity elements in the plan event. Compared with other methods, the accuracy of the entity recognition and entity relation recognition is improved.
作者
刘赫
皮俊波
宋鹏程
赵翰林
张越
刘显壮
LIU He;PI Junbo;SONG Pengcheng;ZHAO Hanlin;ZHANG Yue;LIU Xianzhuang(National Electric Power Dispatching and Control Center of State Grid Corporation of China,Beijing 100031,China;NARI Group Corporation(State Grid Electric Power Research Institute),Nanjing 211106,China;Beijing Kedong Electric Power Control System Co.,Ltd.,Beijing 100192,China)
出处
《中国电力》
CSCD
北大核心
2022年第9期105-110,120,共7页
Electric Power
基金
国家电网有限公司科技项目(5108-202040024A-0-0-00)。
关键词
电网调度
混合神经网络
触发词
事件抽取
power grid dispatching
hybrid neural network
trigger word
event extraction