期刊文献+

Novel encoder for ambient data compression applied to microcontrollers in agricultural robots

原文传递
导出
摘要 Agricultural robots are flexible to obtain ambient information across large areas of farmland. However, it needs to face two major challenges: data compression and filtering noise. To address these challenges, an encoder for ambient data compression, named Tiny-Encoder, was presented to compress and filter raw ambient information, which can be applied to agricultural robots. Tiny-Encoder is based on the operation of convolutions and pooling, and it has a small number of layers and filters. With the aim of evaluating the performance of Tiny-Encoder, different three types of ambient information (including temperature, humidity, and light) were selected to show the performance of compressing raw data and filtering noise. In the task of compressing raw data, Tiny-Encoder obtained higher accuracy (less than the maximum error of sensors ±0.5°C or ±3.5% RH) and more appropriate size (the largest size is 205 KB) than the other two auto-encoders based convolutional operations with different compressed features (including 20, 60, and 200 features). As for filtering noise, Tiny-Encoder has comparable performance with three conventional filtering approaches (including median filtering, Gaussian filtering, and Savitzky-Golay filtering). With large kernel size (i.e., 5), Tiny-Encoder has the best performance among these four filtering approaches: the coefficients of variation with the large kernel (i.e., 5) were 8.6189% (temperature), 10.2684% (humidity), 57.3576% (light), respectively. Overall, Tiny-Encoder can be used for ambient information compression applied to microcontrollers in agricultural information acquisition robots.
出处 《International Journal of Agricultural and Biological Engineering》 SCIE CAS 2022年第4期197-204,共8页 国际农业与生物工程学报(英文)
基金 This work was financially supported by the National Key Research and Development Program(Grant No.2019YFE0125500) the Chinese University Scientific Fund(Grant No.2021TC111).
  • 相关文献

参考文献5

二级参考文献24

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部