期刊文献+

高维类不平衡冠心病数据的变量选择

下载PDF
导出
摘要 近几年,随着大数据概念的不断升温,学术界及产业界对不平衡数据处理问题的研究热情仍未消退,且呈现逐渐升温的趋势,医疗数据成为其重要处理对象。医疗数据的特征是高度不平衡性、变量相关性程度高且维度高。该文首先对数据集进行相关性分析,得出变量间存在严重的相关性,变量之间存在相关性会对分类结果产生影响。
出处 《数字技术与应用》 2022年第9期129-132,共4页 Digital Technology & Application
  • 相关文献

参考文献4

二级参考文献59

  • 1WU Xin-dong,KUMAR V,QUINLAN J R,et al.Top 10 algorithms in data mining[J].Knowledge and Information Systems,2008,14(1):1-37.
  • 2CHAWLA N V,JAPKOWICZ N,KOTCZ A.Editorial:special issue on learning from imbalanced data sets[J].ACM SIGKDD Explorations Newsletter,2004,6(1):1-6.
  • 3HE Hai-bo,GARCIA E A.Learning from imbalanced data[J].IEEE Trans on Knowledge and Data Engineering,2009,21(9):1263-1284.
  • 4TING K M.A comparative study of cost-sensitive boosting algorithms[C]//Proc of the 17th International Conference on Machine Learning.2000:983-990.
  • 5FAN Wei,STOLFO S J,ZHANG Jun-xin,et al.AdaCost:misclassification cost-sensitive boosting[C]//Proc of the 16th International Conference on Machine Learning.1999:97-105.
  • 6SUN Yan-min,KAMEL M S,WONG A K C,et al.Cost-sensitive boosting for classification of imbalanced data[J].Pattern Recognition,2007,40(12):3358-3378.
  • 7GALAR M,FERNNDEZ A,BARRENCHEA E,et al.EUSBoost:enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling[J].Pattern Recognition,2013,46(12):3460-3471.
  • 8JOSHI M V,KUMAR V,AGARWAL R C.Evaluating boosting algorithms to classify rare classes:comparison and improvements[C]//Proc of IEEE International Conference on Data Mining.Washington DC:IEEE Computer Society,2001:257-264.
  • 9GUO Hong-yu,VIKTOR H L.Learning from imbalanced data sets with boosting and data generation:the DataBoost-IM approach[J].SIGKDD Exploration Newsletter,2004,6(1):30-39.
  • 10FREUND Y,SCHAPIRE R.A desicion-theoretic generalization of on-line learning and an application to boosting[J].Journal of Computer & System Sciences,1997,55(1):119-139.

共引文献118

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部