期刊文献+

考虑里程计截断误差的SINS/OD组合导航算法 被引量:3

SINS/OD integrated navigation algorithm considering odometer truncation error
下载PDF
导出
摘要 针对车载惯导/里程计组合导航系统中,里程计测量脉冲输出只为整数,存在截断误差的问题,提出了3种考虑里程计截断误差补偿的SINS/OD组合导航算法。首先,在传统的速度匹配组合导航基础上,将里程计截断误差作为系统状态变量,建立了基于速度观测的考虑截断误差的卡尔曼滤波导航算法;其次,为了降低噪声,不改变系统状态量,将捷联惯导输出转化为脉冲输出与里程计脉冲输出做差作为量测值,建立了基于脉冲观测的卡尔曼滤波导航算法;最后,针对随机常值模型估计里程计截断误差的局限性,提出基于高斯回归模型的里程计截断误差预测和对观测值进行补偿的方法,以实现组合导航解算。140多公里的车载实验结果表明,基于脉冲观测和基于高斯回归模型的算法相比传统算法在定位精度上均提升了80%以上。 To solve the problem of truncation error in vehicle-mounted inertial navigation/odometer integrated navigation system,three SINS/OD integrated navigation algorithms considering truncation error compensation of odometer are proposed.First,on the basis of the traditional speed matching integrated navigation method,the truncation error of the odometer is used as the system state variable,and a Kalman filter navigation algorithm for the truncation error based on the speed observation is established.Secondly,in order to reduce the noise and not change the system state quantity,the strapdown inertial navigation system output is converted into pulse output.The difference between the pulse output converted by INS output and the odometer pulse output is taken as the measurement value,and a Kalman filter navigation algorithm based on pulse observation is established.Finally,aiming at the limitation of estimation of odometer truncation error by stochastic constant value model,a method of odometer truncation error prediction and compensation of observation value based on Gaussian regression model is proposed.The experiment results of vehicle-mounted for more than 140 kilometers show that the positioning accuracy of the algorithm based on pulse observation and the algorithm based on Gaussian regression model are improved by more than 80%compared with the traditional algorithm.
作者 周召发 赵芝谦 张志利 曾进 ZHOU Zhaofa;ZHAO Zhiqian;ZHANG Zhili;ZENG Jin(School of Missile Engineering,Rocket Force University of Engineering,Xi'an 710025,China;Aviation Key Laboratory of Science and Technology on Inertial Technology,FACRI,Xi'an 710065,China)
出处 《中国惯性技术学报》 EI CSCD 北大核心 2022年第3期336-344,共9页 Journal of Chinese Inertial Technology
基金 航空科学基金资助(201808U8004)。
关键词 车载组合导航 里程计 截断误差 高斯回归 卡尔曼滤波 vehicle integrated navigation odometer truncation error Gaussian regression Kalman filtering
  • 相关文献

参考文献3

二级参考文献20

  • 1严恭敏,秦永元,杨波.车载航位推算系统误差补偿技术研究[J].西北工业大学学报,2006,24(1):26-30. 被引量:41
  • 2Syed Z;Aggarwal P;Yang Y.Improved vehicle navigation using aiding with tightly coupled integration[A]新加坡,20083077-3081.
  • 3Kim S B,Bazin J C,Lee H K. Ground vehicle navigation in harsh urban conditions by integrating inertial navigation system, global positioning system, odometer and vision data[J].Radar Sonar and Navigation,2011,(08):814-823.
  • 4Georgy J,Noureldin A,Korenberg M J. Modeling the stochastic drift of a MEMS-based gyroscope in gyro/odometer/GPS integrated navigation[J].IEEE Transactions on Intelligent Transportation Systems,2010,(04):856-872.
  • 5Dissanayake G,Sukkarieh S,Nebot E. The aiding of a low-cost strapdown inertial measurement unit using vehicle model constraints for land vehicle applications[J].IEEE Transactions on Robotics and Automation,2001,(05):731-747.
  • 6Cui Ping-yuan,Xu Tian-lai.Data fusion algorithm for INS/GPS/Odometer integrated navigation system[C]//2007 Second IEEE Conference on Industrial Electronics and Applications.2007:1893-1897.
  • 7Trung D T,Huang Yun-wen,Chiang Kai-wei.Improving the accuracy of MEMS IMU/GPS POS systems for landbased mobile mapping system by using tightly coupled integration and auxiliary odometer[C]//31st Asian Conference on Remote Sensing.2010:515-520.
  • 8Rogers R M.Applied mathematics in integrated navigation systems[M].2nd ed.Reston,VA:American Institute of Aeronautics and Astronautics,2003:77-84.
  • 9Rogers R M.Velocity error representations in inertial navigation system error models[R].AIAA-95-3193-CP,1995.
  • 10方靖,顾启泰,丁天怀.车载惯性导航的动态零速修正技术[J].中国惯性技术学报,2008,16(3):265-268. 被引量:25

共引文献44

同被引文献18

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部